首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >DYNAMICS OF MICROCANTILEVERS TAPPING ON NANOSTRUCTURES IN LIQUID ENVIRONMENTS IN THE ATOMIC FORCE MICROSCOPE
【24h】

DYNAMICS OF MICROCANTILEVERS TAPPING ON NANOSTRUCTURES IN LIQUID ENVIRONMENTS IN THE ATOMIC FORCE MICROSCOPE

机译:在原子力显微镜下液体环境中纳米结构挖掘微电子的动态

获取原文

摘要

The Atomic Force Microscope (AFM) has become an indispensable tool in biology because it permits the probing of nanomechanical properties under physiological (liquid environments) conditions. AFM has been used in liquid environments to image, manipulate and probe atoms, living cells, bacteria, viruses, subcellular structures such as microtubules, individual proteins and DNA. Probably the most popular method used for AFM in liquids is the tapping mode wherein a resonant micro-cantilever is scanned over a sample. Yet very little is known about the dynamics of micro-cantilevers in liquid environments while interacting with nanostructures. This problem is especially challenging because viscous hydrodynamics couples strongly with cantilever motions, and the contribution from the electric double layer forces, which is not significant in air, must be taken into account. Previous attempts in the analysis and simulation of tapping mode in liquid modeled the tip-sample interaction forces using either a Lennard-Jones potential [1, 2], an exponentially growing force of small duration of the cantilever oscillation cycle [3] without any contact mechanics, or an unrealistic discontinuous interaction force [4]. Moreover, in all these papers the micro-cantilever was modeled by a point (lumped) mass, and the hydrodynamic effects were not derived rationally from basic hydrodynamic theory. Instead, a low quality factor (Q factor) and an added fluid mass were simply assumed [1-4]. A direct method to systematically deal with the AFM micro-cantilever using continuous beam theory in liquids governed by the unsteady Stokes equations and experiencing intermittent contact with the sample is not available in the literature.
机译:原子力显微镜(AFM)已成为生物学中不可或缺的工具,因为它允许在生理(液体环境)条件下的纳米机械性能探讨。 AFM已被用于液体环境中的图像,操纵和探针原子,活细胞,细菌,病毒,亚细胞结构,例如微管,单个蛋白质和DNA。可能在液体中用于AFM的最常用的方法是挖掘模式,其中在样品上扫描共振微悬臂。然而,在与纳米结构相互作用的同时,关于液体环境中的微悬臂仪的动态知之甚少。这个问题特别具有挑战性,因为粘性流体动力学强烈地耦合着悬臂运动,并且必须考虑到空气中不显着的电双层力的贡献。以前尝试使用Lennard-Jones电位[1,2]的液体模型的分析和模拟液体挖掘模式的分析和仿真模拟尖端相互作用力[1,2],悬臂振荡周期持续时间的指数越来越大的力[3]没有任何接触力学,或不切实际的不连续的相互作用力[4]。此外,在所有这些纸张中,微悬臂通过点(集成)质量模拟,并且没有从基本的流体动力学理论得知的流体动力学效应。相反,简单地假设了低质量因子(Q因子)和增加的液体质量[1-4]。在文献中,不提供使用连续光束理论使用连续光束理论来系统地处理AFM微悬臂器的直接方法,并在文献中没有经历与样品间歇接触的液体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号