首页> 外文会议>World Aviation Congress and Exposition >Multidisciplinary design optimization of a transonic commercial transport with a strut-braced wing
【24h】

Multidisciplinary design optimization of a transonic commercial transport with a strut-braced wing

机译:用支撑翼的跨音型商用运输多学科设计优化

获取原文

摘要

This paper details the multidisciplinary design optimization (MDO) of the strut-braced wing aircraft and its benefits relative to the cantilever wing configuration. The multidisciplinary design team is subdivided into aerodynamics, structures, aeroelasticity, and synthesis of the various disciplines. The aerodynamic analysis consists of simple models for induced drag, wave drag, parasite drag and interference drag. The interference drag model is based on detailed computational fluid dynamics (CFD) analyses of various wing-strut intersection flows. The wing structural weight is partially calculated using a newly developed wing bending material weight routine that accounts for the special nature of strut-braced wings. The remaining components of the aircraft weight are calculated using a combination of NASA's Flight Optimization System (FLOPS) and Lockheed Martin Aeronautical System formulas. The strut-braced wing and cantilever wing configurations are optimized using Design Optimization Tools (DOT). Offline NASTRAN aerolasticity analysis preliminary results indicate that the flutter speed is higher than the design requirement.
机译:本文详细介绍了支撑翼飞机的多学科设计优化(MDO)及其相对于悬臂机翼配置的优势。多学科设计团队被细分为空气动力学,结构,空气弹性和各种学科的合成。空气动力学分析包括诱导拖动,波拖,寄生虫拖动和干扰拖动的简单模型。干扰拖动模型基于各种翼形交叉路口流动的详细计算流体动力学(CFD)分析。使用新开发的机翼弯曲材料重量常规来部分计算机翼结构重量,该重量常规考虑支撑翼的特殊性。使用NASA的飞行优化系统(拖鞋)和洛克希德马丁航空系统公式的组合来计算飞机重量的其余部件。使用设计优化工具(DOT)优化了支撑翼和悬臂翼配置。离线Nastran Aerolasticity分析初步结果表明颤动速度高于设计要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号