首页> 外文会议>International Conference of Computational Methods in Sciences and Engineering >Investigation of Electron-Atom/Molecule Scattering Resonances: Two Complex Multiconfigurational Self-Consistent Field Approaches
【24h】

Investigation of Electron-Atom/Molecule Scattering Resonances: Two Complex Multiconfigurational Self-Consistent Field Approaches

机译:电子原子/分子散射共振的研究:两种复杂的多轴自我一致的场方法

获取原文

摘要

Resonances are temporarily bound states which lie in the continuum part of the Hamiltonian. If the electronic coordinates of the Hamiltonian are scaled (“dilated”) by a complex parameter, η = αe~(iθ) (α, θ real), then its complex eigenvalues represent the scattering states (resonant and non-resonant) while the eigenvalues corresponding to the bound states and the ionization and the excitation thresholds remain real and unmodified. These make the study of these transient species amenable to the bound state methods. We developed a quadratically convergent multiconfigurational self-consistent field method (MCSCF), a well-established bound-state technique, combined with a dilated Hamiltonian to investigate resonances. This is made possible by the adoption of a second quantization algebra suitable for a set of “complex conjugate biorthonormal” spin orbitals and a modified step-length constraining algorithm to control the walk on the complex energy hypersurface while searching for the stationary point using a multidimensional Newton-Raphson scheme. We present our computational results for the ~2P Be~ˉ shape resonances using two different computationally efficient methods that utilize complex scaled MCSCF (i.e., CMCSCF). These two methods are to straightforwardly use CMCSCF energy differences and to obtain energy differences using an approximation to the complex multiconfigurational electron propagator. It is found that, differing from previous computational studies by others, there are actually two ~2P Be~ˉ shape resonances very close in energy. In addition, N_2 resonances are examined using one of these methods.
机译:共振是暂时的束缚状态,位于汉密尔顿的连续部分。如果通过复杂的参数缩放哈密顿的电子坐标(“扩张”),则η=αe〜(iθ)(α,θim),则其复杂的特征值表示散射状态(谐振和非谐振)对应于结合状态和电离的特征值以及激发阈值保持真实并未修改。这些使得这些瞬态物种适用于结合状态方法。我们开发了一种二次收敛的多组件自我一致的现场方法(MCSCF),是一种良好的边界状态技术,与扩张的哈密顿人联合以研究共振。这是通过采用适用于一组“复合缀合物生物”旋转轨道的第二量化代数和修改的步长约束算法来实现,以控制在使用多维的静止点的复杂能量超越的步行牛顿 - 拉文森计划。我们使用两个不同的计算有效方法介绍了〜2P的计算结果,其使用复杂的缩放MCSCF(即CMCSCF)。这两种方法是直接地使用CMCSCF能量差异,并使用近似对复杂的多轴电子传播者获得能量差异。发现,与其他人的先前计算研究不同,实际上有两个〜2p是能量非常靠近的形状共振。此外,使用这些方法之一检查N_2共振。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号