首页> 外文会议>International Conference on New Frontiers of Processing and Engineering in Advanced Materials >Compositional Design and Property Adjustment of Multi-component Oxides for Thermoelectric Applications
【24h】

Compositional Design and Property Adjustment of Multi-component Oxides for Thermoelectric Applications

机译:用于热电应用的多组分氧化物的组成设计和性能调整

获取原文

摘要

Transition metal oxides form a series of compounds with a uniquely wide range of electronic properties. Some have been known since antiquity, whereas other properties, such thermoelectricity (TE) have been discovered rather recently. In developing such material systems, Mn, Cu, Co or Ni oxides and their binary combinations were considered for thermoelectric applications over forty years ago at the Westinghouse Research Laboratory [1,2]. Complex quaternary compositions can potentially deliver more flexibility in terms for structural variations and their transport mechanisms, anticipating better performance for thermoelectric properties [3]. Over a wide range of compositions, containing Mn, Cu, Ni, and Co, the crystal structure basically takes on the spinel (AB204) configuration, where oxygen tetrahedrally coordinates A-sites and octahedrally coordinates the B-sites; however, the unit ceil contains 56 atoms with 8 A-site atoms, 16 B-site atoms, and 32 oxygen atoms. Electrical conduction in similar oxide compounds has been shown to originate from a charge hopping mechanism: either variable range hopping or small-polaron hopping [4,5]. A small-polaron is a charge that resides on a cation but has a wave function extending beyond that of a normal valence electron. The potentially delocalized nature of this charge combined with the strain field generated by the neighboring atoms has two defining characteristics of a polaron [6, 7]. The consensus is that hopping occurs between the Mn-occupied B-sites of the unit cell, and these sites lie along the <110> directions. The hopping between adjacent B-B sites provides the shortest inter-site gaps, as compared to the A-B or A-A inter-site distances. Current thermoelectric materials are suited to room temperature applications, yet it remains highly desirable to identify new materials that function efficiently at elevated temperatures. Oxides are a natural choice due to their high temperature stability.
机译:过渡金属氧化物形成一系列具有唯一宽范围的电子性质的化合物。自古以来,有些人已知,而其他特性,最近已经发现了这种热电(TE)。在开发这些材料系统中,在西部房屋研究实验室进行了四十多年前的热电应用,考虑了Mn,Cu,Co或Ni氧化物及其二元组合[1,2]。复杂的四元组合物可以在结构性变化及其运输机制方面潜在地提供更多的灵活性,预期热电性能的更好性能[3]。在含有Mn,Cu,Ni和Co的各种组合物上,晶体结构基本上接管尖晶石(AB204)构型,其中氧气四面体坐标坐标和八面体坐标的B位点;然而,单位CEIL含有56个原子,其中8个A位原子,16b位原子和32个氧原子。已经显示出类似氧化物化合物的电导源自跳跃机构:可变范围跳跃或小极化跳跃[4,5]。小极化子是驻留在阳离子的电荷,但具有超出正常价电子的波函数。该电荷的潜在分层性质与相邻原子产生的应变场相结合,具有两个定律的两个定律特性[6,7]。共识是跳跃发生在单元电池的Mn占用的B场之间,并且这些位点沿<110>方向呈现。与A-B或A-A-A间距距离相比,相邻B-B站点之间的跳跃提供了最短的场地间隙。电流的热电材料适用于室温应用,但它仍然非常希望识别在高温下有效起作用的新材料。由于其高温稳定性,氧化物是一种自然的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号