首页> 外文会议>Annual Meeting on Testing and Evaluation of Inorganic Materials >Microstructure Transformation and Mechanical Properties of the Large-bulk Solidified Al_2O_3-ZrO_2 (Y_2O_3) Micro-nanocrystalline Composites Prepared by Combustion Synthesis under High Gravity
【24h】

Microstructure Transformation and Mechanical Properties of the Large-bulk Solidified Al_2O_3-ZrO_2 (Y_2O_3) Micro-nanocrystalline Composites Prepared by Combustion Synthesis under High Gravity

机译:大块状固化的Al_2O_3-ZrO_2(Y_2O_3)微纳米晶复合材料的微观结构转化和机械性能在高重下燃烧合成制备的微纳米晶复合材料

获取原文

摘要

Based on preparing the large-bulk solidified Al_2O_3-ZrO_2 (Y_2O_3) ceramic composites by combustion synthesis under high gravity, the solidification behavior and microstructure transformation of the ceramics as well as their effects on the ceramic properties were investigated. XRD, SEM and EDS analyses showed the ceramic microstructures were composed of the irregular eutectics at the surface and the tetragonal ZrO_2 micrometer spherical crystals in the center of the ceramics respectively. By combining with irreversible nucleation theory, it is considered that the formation of irregular eutectics with micro-nanocrystalline microstructures is a result of the leading nucleation of Al_2O_3 high-fusion-entropy phases followed by the coupled growth of Al_2O_3-ZrO_2 phases, whereas the presence of the tetragonal Zr_2 spherical microstructures in the center of the ceramics results from the leading nucleation of ZrO_2 cubic phases followed by the independent growth of Al_2O_3-ZrO_2 phases. As a result, it is just the unique microstructure transformation during the solidification process that the highest hardness at the surface and the highest fracture toughness in the center of the ceramics are achieved respectively.
机译:基于在高重力下燃烧合成制备大型固化的Al_2O_3-ZrO_2(Y_2O_3)陶瓷复合材料,研究了陶瓷的凝固行为和微观结构转化以及它们对陶瓷性质的影响。 XRD,SEM和EDS分析显示陶瓷微观结构分别在陶瓷中心的表面和四边形ZrO_2微米球形晶体中由不规则的冲法器组成。通过与不可逆的成核理论结合,认为具有微纳米晶体微结构的不规则共肠的形成是Al_2O_3高融合熵的前导成核的结果,然后进行Al_2O_3-ZrO_2阶段的偶联生长,而存在在陶瓷中心中的四方Zr_2球形微观结构由ZrO_2立方相的前导成核,然后是Al_2O_3-ZrO_2阶段的独立生长。结果,仅凝固过程中的独特组织变换,即分别实现了陶瓷中心的表面上的最高硬度和陶瓷中心的最高断裂韧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号