首页> 外文会议>IGRC 2011 >ALTERNATIVES TO ELECTRICITY FOR TRANSMISSION AND LOW-COST FIRMING STORAGE OF LARGE-SCALE STRANDED RENEWABLE ENERGY AS PIPELINED HYDROGEN AND AMMONIA CARBON-FREE FUELS
【24h】

ALTERNATIVES TO ELECTRICITY FOR TRANSMISSION AND LOW-COST FIRMING STORAGE OF LARGE-SCALE STRANDED RENEWABLE ENERGY AS PIPELINED HYDROGEN AND AMMONIA CARBON-FREE FUELS

机译:用于大规模链可再生能源的传输和低成本固定储存的电力替代品作为流水线氢和氨无碳燃料

获取原文

摘要

Humanity must soon "run the world on renewables" - plus some degree of nuclear - but cannot, and should not try to, accomplish this entirely with electricity transmission. We need to supply all energy, not just electricity, from diverse renewable energy (RE) resources, both distributed and centralized, where the world's richest RE resources - of large geographic extent and high intensity - are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver the energy. Electricity energy storage cannot affordably firm large, intermittent renewables at annual scale, while carbon-free gaseous hydrogen (GH_2) and liquid anhydrous ammonia (NH_3) fuels can, at < US$ 1.00 / kWh capital cost: GH_2 in large solution-mined salt caverns, NH_3 in surface tanks, both pressurized and refrigerated. Energy content of these fuels: I kg GH_2 = 39.4 kWh (HHV) or 33.3 kWh (LHV) I kgNH_3 = 6.3 kWh (HHV) or 5.2 kWh (LHV) Higher heating value (HHV) and lower heating value (LHV) of fuels differ by the heat of vaporization of water. We need to conceive, analyze, strategize, snd commit to building complete RE systems, from photons and moving air and water molecules to firm and dispatchable energy services delivered to distant end-users. Natural gas energy systems may be a better model than a "smarter" electricity grid. "Smart Grid" is emerging as primarily a DSM (demand side management) strategy to encourage energy conservation. Making the electricity grid "smarter" does not: 1. Increase physical transmission capacity; 2. Provide affordable annual-scale firming storage for RE; 3. Solve grid integration problem for large, time-varying RE; 4. Alleviate "not in my back yard" (NIMBY) objections to new transmission siting; 5. Reduce the high O&M costs of overhead electric lines. The "smarter" grid may be more vulnerable to cyberattack than today's grid. Adding storage, control, and power quality adjunct devices to the electricity grid, to accommodate very high RE ontent, may be technically and economically inferior to the GH_2 and NH_3 RE systems discussed here. Thus, we need to look beyond "smart grid", expanding our concept of "transmission", to synergistically and simultaneously solve the transmission, firming storage, and RE integration "balancing" problems now severely constraining our progress toward "running the world on renewables". Today's energy industry is very water-intensive, consuming -17,000 × 10^9 liters of fresh water annually in USA. If total USA annual energy - from all sources, for all uses - were generated as RE-source electricity and converted to GH_2 and / or NH_3 fuels for transmission, total freshwater feedstock consumption, about one-fourth liter per kWh, would be -900 × 10^9 liters per year. This is far less than -17,000 × 10^9 liters the USA energy sector "consumed" in 2005. For example, a 1,000 MW windplant, operating at 40% capacity factor (CF), producing -3,500 TWh (TWh = 10~9 kWh) per year, would consume -800 × 10^6 liters of freshwater feedstock per year. Transportation electrification does not necessarily require battery electric vehicles (BEV's). GH_2 and / or NH_3 fuels would supply electric energy to the drive system via fuel cells, and may provide longer range at lower cost, greater energy security, and with better access to large, stranded, RE resources as annually-firm energy than an expanded and "smarter" electricity grid could provide. The energy industry now needs to conceive, design, bid, build, and operate pilot plants by which to discover and demonstrate the technical and economic advantages - if any - of RE-source GH_2 and / or NH_3 fuel transmission, storage, and delivery systems, as humanity urgently proceeds to "run the world on renewables".
机译:人类必须很快“在可再生能源上运行世界” - 加一定程度的核 - 但不能试图,完全用电力传播完成这一目标。我们需要提供各种能源,不仅仅是电力,从各种可再生能源(重新)资源,都是世界上最富有的地理范围和高强度 - 搁浅的,搁浅了:远离最终用户或不存在的收集和传输系统以提供能量。电力储存不能实惠,在年度上稳定,间歇性可再生能源,而无碳气体氢气(GH_2)和液体无水氨(NH_3)燃料可以在大型溶液 - 盐盐中提供<00美元/千瓦时的资本成本:GH_2洞穴,NH_3在表面罐中,包括加压和冷藏。这些燃料的能量含量:i kg gh_2 = 39.4 kwh(hhv)或33.3 kwh(lhv)ikgnh_3 = 6.3 kwh(hhv)或5.2 kwh(lhv)较高的加热值(hhv)和燃料的较低的加热值(lhv)随着水的蒸发热而不同。我们需要设想,分析,策略,SND提交,从光子和移动空气和水分子从光子和移动空气和水分子到遥远的最终用户提供的坚定和调度能源服务。天然气能量系统可以是比“更智能”的电网更好的模型。 “智能电网”是新兴的,主要是达斯(需求侧管理)战略,以鼓励节能。电网“更智能”不:1。提高物理传输能力; 2.为RE提供经济实惠的年度紧密储存; 3.解决大型,时变的网格融合问题; 4.减轻“不在我的后院”(Nimby)对新的传输选址的反对意见; 5.降低顶部电线的高O&M成本。 “智慧”网格可能比今天的网格更容易受到网络的影响。向电网添加存储,控制和电力质量附件,以适应非常高的回复,可以在这里讨论的GH_2和NH_3 RE系统在技术上和经济上。因此,我们需要超越“智能电网”,扩展我们的“传输”的概念,同时同时解决传输,紧致存储,并重新整合“平衡”问题现在严重限制了我们对“可再生世界的世界的进展” “。今天的能源产业非常含水,在美国每年消耗-17,000×10升淡水。如果总量的年度能源 - 来自所有来源,对于所有用途 - 被生成为重新源电力,并转换为GH_2和/或NH_3燃料进行传输,总淡水原料消耗,约四分之一升每千瓦时,将是-900 ×10 ^ 9升每年。这远远低于-17,000×10 ^ 9升2005年“消耗”。例如,1,000 MW滑动板,以40%的容量因子(CF)运行,生产-3,500 TWH(TWH = 10〜9每年千瓦时,每年会消耗-800×10 ^ 6升每年淡水原料。运输电气化不一定需要电池电动车(BEV)。 GH_2和/或NH_3燃料将通过燃料电池向驱动系统提供电能,并且可以以较低的成本,更高的能源安全性提供更长的范围,并且可以更好地访问大型,滞留的重新资源,而不是扩展的和“更智能”的电网可以提供。能源行业现在需要设想,设计,出价,构建和操作试点工厂,以便发现和展示技术和经济优势 - 如果是 - 重新源GH_2和/或NH_3燃料传输,存储和交付系统作为人类迫切需要“在可再生能源上运行世界”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号