首页> 外文会议>International Conference on Sport Material, Modelling and Simulation >Liquid-phase Method Preparation of Water-soluble ZnS:Cu~(2+) Nanoparticles and Luminous Performance Research
【24h】

Liquid-phase Method Preparation of Water-soluble ZnS:Cu~(2+) Nanoparticles and Luminous Performance Research

机译:水溶性ZnS的液相方法制备:Cu〜(2+)纳米粒子和发光性能研究

获取原文

摘要

Series samples ZnS: Cu~(2+) have been prepared by Liquid-phase method and the final productivity has a great improvement compared with traditional method. Different concentration thioglycolic acid (TGA) modified combining nanoparticle makes water soluble ability better. When precipitating agent water and ethanol volume ratio is 3:1, sample production rate is the highest. Under XRD theoretical calculation, the size of the series of samples are about 16nm, and the sample size is 18 nm while using Laser Particle Size Analyzers (Rise - 2208) measured. Series sample shows strong absorption under 200 nm to 340 nm range. Through absorption spectrum calculating the forbidden band width is about 3.58 eV. Under 210 nm of excitation, the emission spectrum shows that the strongest peak locates in 425 nm which belongs to Cu~(2)+ ions' t_2 transition. Because ZnS(CdS) unique properties and potential applications in Luminescent semiconductor nanocrystals, they have attracted great interest in the past two decades. The optical properties of the nanocrystals can be tailored by judicious control over the particle size and size distribution or by doping with metal ions. We have synthesized a series of different ZnS:Cu~(2+) samples by microemulsion method. Transition metal ions-doped semiconductor nanocrystals are emerging as a lucrative alternative to semiconductor quantum dots with tunable, intense, and stable emission in visible as well as in near-IR spectral window for different optoelectronic applications. Water-soluble quantum dots (QDs) with high photo-luminescence quantum efficiency have shown great potentials in photonic crystals, thin-film light-emitting devices, and especially biological labels. Since QDs are bright, light stability and have a broad excitation spectrum corresponding a narrow emission spectrum which controlled by the size and the composition of the material. Series samples have many colors imaging combined with biological samples, therefore they can be used in living tissues. Nowadays QDs have been one of the most attractive areas of biomarker research. Recently, about the water-souble ZnS QDs reseash get many valuable progresses. In 2005, Teng Feng et al. synthesized water-sol core/shell CdSe/CdS quantum dots (QDs) in aqueous solution by using mercapto-acetate acid as stabilizer nanoparticles. In 2008, Zhenwei Song et al. showed that the core-shell structure would widely enhance chemical stability and quantum yield of nanoparticles, which were the basis to turn the QDs from the organic phase to aqueous phase. The QDs were transformed from the chloroform solvent to the aqueous phase with no change of their fluorescence peak and maintain relatively high quantum efficiency through modifing the surface of QDs with the chemical reagent 3-mercaptopropionic acid (MPA). In 2010, Lingling Peng et al. synthesized Mn~(2+) doped ZnS nanocrystals based on low dopant concentrations (0-2%) and coated with a shell of Zn(OH)_2 have been prepared via soft template and precipitation reaction. In 2011, Xiang Yin et al. introduced a method to synthesize CdTe quantum dots (QDs) which high fluorescence density in water phase. In their study, CdTe QDS were labeling with Human serum albumin (HAS) by covalence coupled action, and it is confirmed that QDs-HAS complexes had good fluorescent properties.
机译:系列样品ZNS:Cu〜(2+)通过液相法制备,与传统方法相比,最终生产率具有很大的改进。不同浓度的巯基乙酸(TGA)改性组合纳米颗粒使水溶性能力更好。当沉淀剂水和乙醇体积比为3:1时,样品生产率最高。在XRD理论计算下,一系列样品的尺寸约为16nm,使用激光粒度分析仪(上升-2208)时,样品尺寸为18nm。系列样品显示出200nm至340nm范围内的强吸收。通过计算禁区宽度的吸收光谱约为3.58eV。在210nm的激发下,发射光谱表明,最强的峰位于425nm中,其属于Cu〜(2)+离子的T_2转变。因为ZNS(CDS)发光半导体纳米晶体中的独特性质和潜在应用,因此在过去的二十年中,他们吸引了极大的兴趣。纳米晶体的光学性质可以通过可明智控制对粒度和尺寸分布或用金属离子进行掺杂来定制。我们通过微乳液法合成了一系列不同的ZnS:Cu〜(2+)样品。过渡金属离子掺杂的半导体纳米晶体作为具有可调谐,强度和稳定发射的半导体量子点的Lucrifative替代品,如可见的,并且在近红外光谱窗口中,用于不同的光电应用。具有高光发光量子效率的水溶性量子点(QDS)在光子晶体,薄膜发光器件和尤其是生物标记中显示出很大的电位。由于QDS是明亮的,光稳定性并且具有宽的激励光谱,其对应于由材料的尺寸和组成控制的窄发射光谱。系列样品具有许多颜色成像与生物样品相结合,因此它们可用于活组织。如今QDS一直是生物标志物研究中最具吸引力的地区之一。最近,关于水和Zns QDS reaseash获得了许多有价值的进展。 2005年,滕峰等人。通过使用巯基 - 乙酸盐作为稳定剂纳米颗粒,在水溶液中合成水溶液核/壳Cdse / Cds量子点(QDS)。 2008年,振伟歌等人。表明,核心壳结构将广泛增强纳米颗粒的化学稳定性和量子产率,这是将QD从有机相转向水相的基础。将QD从氯仿溶剂转变为水相,没有变化它们的荧光峰,通过用化学试剂3-巯基丙酸(MPa)改变QDS的表面来保持相对高的量子效率。 2010年,Lingling Peng等人。基于低掺杂剂浓度(0-2%)的合成的Mn〜(2+)掺杂ZnS纳米晶体并通过软模板和沉淀反应制备涂覆Zn(OH)_2的壳壳。 2011年,翔寅等。介绍了合成水相中高荧光密度的CDTE量子点(QDS)的方法。在他们的研究中,CdTe QD通过共价偶联作用用人血清白蛋白(具有)标记,证实QDS-具有良好的荧光特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号