首页> 外文会议>International Symposium on Turbulence, Heat and Mass Transfer >Application of chemiluminescence imaging of OH-radical to flameless combustion of hydrogen containing, low-calorific gases
【24h】

Application of chemiluminescence imaging of OH-radical to flameless combustion of hydrogen containing, low-calorific gases

机译:OH-自由基化学发光成像的应用在含氢,低热量气体氢气的无焰燃烧中的应用

获取原文

摘要

Flameless combustion is achieved by creating a strong recirculation of burnt gases inside the combustion chamber, which leads to a dilution of the fuel-oxidizer mixture. This causes the combustion region to be extended to the whole furnace, rather than concentrated on a flame front. Dilution avoids the formation of thermal hot spots, significantly reducing nitrogen oxides and carbon emissions without compromising the efficiency. The extension of the reaction zone is obviously a fundamental feature of flameless combustion. Chemiluminescence imaging of excited radicals has found considerable application in reaction zone marking. In this study, the shape and position of the reaction zone has been characterized by recording images of the chemiluminescence self-emission of OH radicals. OH radicals have been chosen because they emit at a wavelength of 307 nm (UV), a spectral region where the contribution of the wall emission is negligible. An intensified CCD camera equipped with a filter has been used. An image-processing algorithm has been developed and applied to reduce noise, correct imperfections (e.g., due to minor changes in the position and orientation of the camera) and extract relevant information from the large amount of data available. The experimental setup consisted of a 30 kW combustion chamber, a mixing unit supplying syngas from pure gas in bottles and an electrical air preheater. Two hydrogen-containing, low calorific gas mixtures (CH_4/CO/H_2/CO_2/N_2) have been tested in flameless conditions. Natural gas (NG) has been used as reference fuel. OH imagery showed that the position of the reaction zone is closer to the injection section when the fuel contains hydrogen and when the air excess is increased. CFD simulations have been performed using Ansys Fluent with an Eddy Dissipation Concept model for turbulence-chemistry interaction model and a detailed KEE mechanism (18 species, 58 reactions). The numerical prediction of the OH radical concentration has been compared with experimental results showing a satisfactory agreement. The conclusion of this study is that OH imagery is a relatively simple but extremely powerful tool for the investigation of combustion systems, provided that an optical access is available and that an automatic image processing procedure is established. The data made available by this technique can be used not only for visualization of the position and extension of the reaction zone, but can be treated to obtain quantitative information of the combustion conditions and used for CFD validation.
机译:通过在燃烧室内部的燃烧气体产生强烈再循环来实现毛躁燃烧,这导致燃料氧化剂混合物的稀释。这使得燃烧区域延伸到整个炉,而不是集中在火焰前面。稀释避免了热热点的形成,显着降低氮氧化物和碳排放而不会影响效率。反应区的延伸显然是无毛燃烧的基本特征。激发自由基的化学发光成像在反应区标记中发现了相当大的应用。在该研究中,通过记录OH基团的化学发光自排放的图像来表征反应区的形状和位置。已经选择了哦基团,因为它们发射在307nm(UV)的波长,一个光谱区域,其中墙壁排放的贡献可以忽略不计。已经使用了配备过滤器的强化CCD摄像头。已经开发了一种图像处理算法,并应用于降低噪声,正确的缺陷(例如,由于相机位置和方向的次要变化),并从可用的大量数据中提取相关信息。实验设置包括30千瓦燃烧室,一种混合​​单元,其供应来自瓶子中的纯气体和电气预热器的纯气体。含有两种含氢的低热量气体混合物(CH_4 / CO / H_2 / CO_2 / CO_2 / N_2)已在无毛条件下进行测试。天然气(NG)已被用作参考燃料。 OH图像显示,当燃料含有氢气和空气过量时,反应区的位置更接近注射部分。 CFD仿真已经使用流利的涡流耗散概念模型进行了流畅的湍流 - 化学相互作用模型和详细的Kee机制(18种,58个反应)。将OH自由基浓度的数值预测与实验结果进行了比较,显示出令人满意的协议。本研究的结论是OH图像是用于调查燃烧系统的相对简单但极具强大的工具,条件是光学访问可用并且建立自动图像处理过程。通过该技术提供的数据不仅可以用于可视化反应区的位置和延伸,但可以处理以获得燃烧条件的定量信息并用于CFD验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号