首页> 外文会议>US National Combustion Meeting >Analysis of a Mesoscale Fuel Reformer with Heat Recirculation and Porous Surface Stabilized Flame
【24h】

Analysis of a Mesoscale Fuel Reformer with Heat Recirculation and Porous Surface Stabilized Flame

机译:热再循环和多孔表面稳定火焰分析Mescle燃料重整器

获取原文

摘要

Syngas, or synthetic gas, is composed primarily of hydrogen (H_2) and carbon monoxide (CO). Carbon monoxide and hydrogen store chemical energy, thus syngas can be used as a fuel source. Fuel reformation is the process used to convert an existing fuel source, such as methane or diesel, into synthetic gas. In this study, thermal partial oxidation is used for fuel reformation to eliminate the need for the catalyst. Thermal partial oxidation employs thermal energy to partially oxidize the fuel to produce syngas. The major drawback to this method of fuel reforming is the significant heat loss associated with the procedure. Further, fuel reforming at the mesoscale is difficult because of the short residence time available. In this study, a fuel reformer with a counterflow annular heat exchanger for heat recirculation and porous inert media to stabilize the flame is presented. These design features address the issue of major heat loss and make the process much more efficient. A detailed computational analysis is presented to evaluate design features and show thermal and combustion characteristics of the system. The analysis is based on conservation equations of mass, momentum, and species mass conservation in an axisymmetric domain. The computational analysis includes simulations under rich conditions at ambient pressure. Chemkin and Fluent software were integrated to simulate rich methane-air combustion at different equivalence ratios using a detailed chemical kinetic mechanism. Analysis reveals the effects of reactant inlet temperature and fuel reformer operating conditions on fuel to syngas conversion. Ultimately this study shows that thermal oxidation for fuel reforming can be a viable and efficient process.
机译:合成气或合成气体主要由氢(H_2)和一氧化碳(CO)组成。一氧化碳和氢气储存化学能,因此合成气可用作燃料源。燃料改造是用于将现有燃料源(如甲烷或柴油)转化为合成气体的过程。在该研究中,热部分氧化用于燃料改造以消除对催化剂的需要。热部分氧化采用热能以部分氧化燃料以产生合成气。这种燃料重整方法的主要缺点是与该程序相关的显着的热量损失。此外,由于可用的宿舍时间短,因此难以提供的燃料重整。在本研究中,提出了一种用于热再循环和多孔惰性介质的造流环形热交换器的燃料重整器,以稳定火焰。这些设计功能解决了主要热量损失问题,使过程更有效。提出了一种详细的计算分析来评估设计特征,并显示系统的热燃烧特性。该分析基于轴对称域中的质量,动量和物种质量保护的保护方程。计算分析包括在环境压力下在富条件下的模拟。使用详细的化学动力学机制,集成了Chemin和Fluent软件以模拟不同的等效比率的富含甲烷 - 空气燃烧。分析揭示了反应物入口温度和燃料重整器操作条件对合成气转化的影响。最终,该研究表明,用于燃料重整的热氧化可以是可行和有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号