首页> 外文会议>WACBE World Congress on Bioengineering >Finite-Difference Time-Domain Simulation of Localized Surface Plasmon Resonance Adsorption by Gold Nanoparticles
【24h】

Finite-Difference Time-Domain Simulation of Localized Surface Plasmon Resonance Adsorption by Gold Nanoparticles

机译:金纳米粒子局部表面等离子体共振吸附的有限差分时间域模拟

获取原文

摘要

Using optical sensors to transform light-matter interaction into optical signal has become more and more popular. This is especially true for the fields that require ultra-fast responsibility and remote sensing, such as environmental monitoring, food analysis and medical diagnosis. Among numerous optical sensors, plasmonic nanosensors are of great promise due to their spectral tunability and good adaptability to modern nanobiotechnologies. Localized surface plasmon resonance (LSPR) is the electromagnetic resonance of conducting electrons on metal surface, and it is very sensitive to the variation of environmental refractive index. The LSPR is considered as a useful sensing parameter that provides very good biochemical information. The SPR absorption peak also can be adjusted by changing the nano structure on the LSPR biological sensor chip. In this study, Finite-Difference Time-Domain (FDTD) was applied to simulate the LSPR absorption peak. Four model parameters were modified to study the LSPR sensing sensitivity: (a) the incident light wavelength, (b) the diameter of nanoparticle, (c) the spacing among nanoparticles, and (d) the height of nanoparticle. The simulation results show that 860nm is the best wavelength for the LSPR adsorption measurement. The optimal diameter of nanoparticle is 150nm, and the nanoparticle spacing is 90nm. Higher nanoparticle height provides higher sensitivity, but it also depends on the process capability. The FDTD simulation can be a useful tool to design a LSPR nanoparticle biosensor.
机译:使用光学传感器将灯具交互变换为光学信号变得越来越受欢迎。这对于需要超快速责任和遥感的领域尤其如此,例如环境监测,食物分析和医学诊断。在许多光学传感器中,由于其光谱可调性和对现代纳米能力的良好适应性,等离子体纳米传感器具有很大的承诺。局部表面等离子体共振(LSPR)是金属表面上电导电子的电磁共振,对环境折射率的变化非常敏感。 LSPR被认为是一种有用的感测参数,提供非常好的生物化学信息。还可以通过改变LSPR生物传感器芯片上的纳米结构来调节SPR吸收峰。在该研究中,应用有限差分时间域(FDTD)来模拟LSPR吸收峰。修改了四种模型参数以研究LSPR感应灵敏度:(a)入射光波长,(b)纳米粒子的直径,(c)纳米颗粒之间的间距,和(d)纳米粒子的高度。仿真结果表明,860nm是LSPR吸附测量的最佳波长。纳米颗粒的最佳直径为150nm,纳米颗粒间距为90nm。较高的纳米粒子高度提供更高的灵敏度,但也取决于过程能力。 FDTD仿真可以是设计LSPR纳米粒子生物传感器的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号