首页> 外文会议>SPE Western Regional Meeting >A New Technique to Predict In-Situ Stress Increment due to Slurry Injection into Sandstone Formations: Case Study from a Biosolids Injector in Los Angeles, California, USA
【24h】

A New Technique to Predict In-Situ Stress Increment due to Slurry Injection into Sandstone Formations: Case Study from a Biosolids Injector in Los Angeles, California, USA

机译:一种新的技术,预测原位应力增量因砂岩地层的浆料注射:洛杉矶生物溶解器的案例研究,美国加利福尼亚州洛杉矶

获取原文

摘要

Underground injection of slurry in batches or cycles with shut-in periods allows fracture closure and pressure dissipation which in turn prevents pressure accumulation and injection pressure increase from batch to batch. The "G-function" technique is a well-known method for analyzing the pressure fall off data and has been used in monitoring the evolution of formation stress and to identify the fracture closure point after each injection batch. However, in many cases the accumulation of solids on the fracture faces slows down the leak off which can delay the fracture closure up to several days. Well shut-in for such a long time between the batches is impractical. The objective of this work is to develop a new predictive method to monitor the stress increment evolution when well shut-in time between injection batches is not sufficient to allow the fracture to close. The new technique predicts the fracture closure pressure based on the knowledge of the instantaneous shut-in pressure (ISIP) and the injection formation petrophysical and mechanical properties including: porosity, permeability, overburden stress, formation pore pressure, Young's modulus, and Poisson's ratio. The injection pressure data from actual biosolids injection operations in Los Angeles, California has been used to validate the new predictive technique. The G-function analysis method was used to identify the fracture closure pressure in the early well life before solids accumulation on the fracture faces slowed the leak off rate. In later injection batches, solids accumulation did not allow fracture closure to occur during the well shut-in. Hence, the new technique was successfully used to build the stress increment profile of the injection formation. During the early well life, the match between the predicted fracture closure pressure values and those obtained from the G-function analysis was excellent, with an absolute error of less than 1%. In later injection batches, the predicted stress increment profile shows a clear trend consistent with the mechanisms of slurry inj ection and stress shadow analysis. Furthermore, the work shows that the inj ection operational parameters such as injection flow rate, injected volume per batch, and the volumetric solids concentration have strong impact on the predicted maximum disposal capacity which is reached when the injection zone in-situ stress equalizes the upper barrier stress. In addition, the results show that the formation disposal capacity increases when the injection flow rate and the injected volume per batch increase. The new technique helps in predicting the stress increment over time even when the well shut-in duration is shorter than the fracture closure time. As a result, safe injection operations can be conducted by assuring that stress increments are within allowable limits without extending the shut-in period after each injection. Another advantage of the technique is that it assists in optimization of the injection parameters to achieve the maximum possible injection capacity of the formation/well.
机译:在批量或循环的地下注入浆料,允许断裂闭合和压力耗散,这反过来防止压力积聚和注射压力从批量增加到批次。 “G函数”技术是用于分析压力下降数据的公知方法,并且已被用于监测形成应力的演变并在每个注射批次后识别断裂闭合点。然而,在许多情况下,骨折面上的固体积聚在泄漏泄漏泄漏时,可以将裂缝闭合到几天。在批次之间这样的很长一段时间的良好关闭是不切实际的。这项工作的目的是开发一种新的预测方法,以监测注射批次之间的刚性时间井间歇时间,以允许骨折关闭的良好的关闭时间。新技术基于瞬时闭合压力(Isip)和注射形成岩浆物理和机械性能,包括:孔隙,渗透性,覆盖压力,形成孔隙压力,杨氏模量和泊松比的裂缝闭合压力。来自加利福尼亚州洛杉矶实际生物糖类注射行动的注射压力数据已被用来验证新的预测技术。 G函数分析方法用于识别早期井寿命中的断裂闭合压力,然后在裂缝面上的固体积聚减慢泄漏率。在后来的注射批次中,固体积聚不允许在井中发生骨折闭合。因此,新技术成功地用于构建注射形成的应力增量轮廓。在早期的井寿命期间,预测断裂闭合压力值与从G函数分析获得的匹配是优异的,绝对误差小于1%。在后来的注射批次中,预测的应力增量轮廓显示出含有浆料侵蚀和应力暗影分析的机制一致的明显趋势。此外,该工作表明,注射挠度操作参数如喷射流量,每批次注射体积和体积固体浓度对达到其中预测的最大处理容量的强烈冲击时,注入区的原位应力均衡的上屏障压力。此外,结果表明,当注射流速和每批注射体积增加时,地层处理能力增加。即使当井关闭持续时间短于断裂闭合时间,新技术也有助于预测压力递增随着时间的推移。结果,可以通过确保应力增量在允许的限制内而不延长每个注射后的关闭时段,可以进行安全喷射操作。该技术的另一个优点是它有助于优化注射参数以实现形成/孔的最大可能的喷射容量。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号