首页> 外文会议>SPE Western Regional Meeting >Applying Machine Learning Techniques to Interpret Flow Rate, Pressure and Temperature Data From Permanent Downhole Gauges
【24h】

Applying Machine Learning Techniques to Interpret Flow Rate, Pressure and Temperature Data From Permanent Downhole Gauges

机译:应用机器学习技术从永久井下仪表中解释流量,压力和温度数据

获取原文

摘要

Permanent downhole gauges (PDGs) provide a continuous record of pressure, temperature, and sometimes flow rate during well production. The continuous record provides us rich information about the reservoir and makes PDG data a valuable source for reservoir analysis. It has been shown in previous work that the convolution kernel based data mining approach is a promising tool to interpret flow rate and pressure data from PDGs. The convolution kernel method denoises and deconvolves the pressure signal successfully without explicit breakpoint detection. However, the bottlenecks of computational efficiency and incomplete recovery of reservoir behaviors limit the application of the method to interpret real PDG data. In this paper, three different machine learning techniques were applied to flow rate-pressure interpretation. We formulated the problem into a linear regression on parameters that connect the nonlinear flow rate features with pressure targets. The linear process leads to a closed form solution, which speeds up the computation dramatically. Linear regression was shown to have the same learning quality as the convolution kernel method, and outperforms it with much less computational effort. Kernel ridge regression was applied to address the issue of incomplete recovery of reservoir behaviors. Kernel ridge regression utilizes the expanded features given by the kernel function to capture the more detailed reservoir behaviors, while controlling the prediction error using ridge regression. It was shown that kernel ridge regression recovers the full reservoir behaviors successfully, e.g. wellbore storage effect, skin effect, infinite-acting radial flow and boundary effect. Some potential uses of temperature data from PDGs are also discussed in this paper. Machine learning was shown to be able to model temperature and pressure data recorded by PDGs, even if the actual physical model is complex. This originates from the fact that by using features as an approximation, machine learning does not require perfect knowledge of the physical model. The modeling of pressure using temperature data was extended to two promising applications: pressure history reconstruction using temperature data, and the cointerpretation of temperature and pressure data when flow rate data are not available.
机译:永久井下仪表(PDG)提供良好的压力,温度,有时在井生产过程中的连续记录。连续记录为我们提供有关储层的丰富信息,并使PDG数据成为储层分析的有价值的源。它已经显示在以前的工作中,卷积基于内核的数据挖掘方法是一个有前途的工具,用于解释PDG的流量和压力数据。卷积内核方法在没有明确断点检测的情况下成功地剥去和解构压力信号。然而,计算效率和储层行为不完全恢复的瓶颈限制了该方法解释真实PDG数据的应用。本文采用了三种不同的机器学习技术来应用于流量 - 压力解释。我们将问题分布为在连接具有压力目标的非线性流量特征的参数上的线性回归中。线性过程导致封闭的形式溶液,其急剧加速计算。线性回归被显示为具有与卷积内核方法相同的学习质量,并且以更少的计算工作效果优越。应用内核Ridge回归来解决储层行为不完全恢复问题。内核RIDGE回归利用内核功能给出的扩展功能来捕获更详细的储库行为,同时使用脊回归控制预测错误。结果表明,内核Ridge回归成功地恢复了完整的储层行为,例如,井筒储存效果,皮肤效果,无限作用径向流动和边界效应。本文还讨论了来自PDG的温度数据的一些潜在用途。即使实际的物理模型很复杂,也显示机器学习能够模拟由PDG记录的温度和压力数据。这源于通过使用功能作为近似的功能,机器学习不需要完美的物理模型知识。使用温度数据的压力建模扩展到两个有前途的应用:使用温度数据的压力历史重建,以及当流速数据不可用时温度和压力数据的共同诠释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号