首页> 外文会议>AHS Specialists Conference on Aeromechanics Design for Transformative Vertical Flight >Experimental Optimization of UAV-Scale Cycloidal Rotor Performance
【24h】

Experimental Optimization of UAV-Scale Cycloidal Rotor Performance

机译:UAV级环形转子性能的实验优化

获取原文

摘要

This paper focuses on systematic time-averaged thrust and power measurements to optimize the performance of a cycloidal rotor operating at Reynolds numbers between 100,000 and 300,000. A cycloidal rotor is a revolutionary horizontal axis propulsion device that has proven to benefit from increased maneuverability and aerodynamic efficiency at micro air vehicle (MAV) scales. The current study aims to characterize the performance of a cycloidal rotor at significantly larger UAV-scales. Towards this, experiments were conducted for a range of rotational speeds across different blade pitch amplitudes for rotor configurations with varying airfoils, number of blades, and chord-by-radius ratios. Studies found that an airfoil thickness as high as 25% of chord were capable of efficiently generating thrust and thicker airfoils provide efficient operation over a larger range of pitch amplitudes. Increasing number of blades resulted in increased aerodynamic efficiency despite a reduction in thrust per unit blade area. Optimal pitch amplitudes varied based on rotor thrust (or inflow), but centered about a pitch amplitude of ±30°. The cyclorotor demonstrated high C_T values, even an order of magnitude higher than a conventional helicopter rotor due to the efficient use of the three-dimensional area. At UAV-scale Reynolds numbers, cycloidal rotors' aerodynamic efficiency was found to be less sensitive to chord-by-radius ratio with the exception of higher pitch amplitudes (±40°), where efficiency increased linearly until a chord-by-radius ratio of 0.5 and then remained constant. Increasing the chord-by-radius ratio does provide a means to increase thrust at a constant rotational speed without sacrificing thrust per unit area or power loading.
机译:本文侧重于系统的时间平均推力和功率测量,以优化在100,000和300,000之间的雷诺数运行的摆线转子的性能。摆线转子是一种革命性的水平轴推进装置,已被证明可以受益于微空气车辆(MAV)尺度的增加的机动性和空气动力学效率。目前的研究旨在表征系环形转子的性能,在显着更大的UAV级别。为此,在不同叶片桨距的转速范围内进行实验,用于具有不同翼型的转子配置,叶片的数量和逐个半径比。研究发现,高达25%弦的翼型厚度能够有效地产生推力和较厚的翼型,在更大范围的间距幅度上提供有效的操作。越来越多的叶片导致空气动力学效率增加,尽管每个单位叶片区域的推力降低。基于转子推力(或流入)而变化的最佳音调幅度,但以±30°的距振幅为中心。轮滑源运动器展示了高C_T值,甚至由于三维区域的有效使用而高于传统直升机转子的数量级。在UAV级雷诺数,发现摆线转子的空气动力学效率对和弦逐半径比敏感,除了更高的音调幅度(±40°),其中效率随着沿沿半径比率的线性增加而增加0.5,然后保持恒定。增加逐半径比率确实提供了一种以恒定的转速增加推力而不牺牲每单位面积或功率负荷的推力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号