首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Short-Wave Infrared PbS Colloidal Quantum Dot ZnO Nanowire Solar Cells Aimed at Tandem Solar Cells
【24h】

Short-Wave Infrared PbS Colloidal Quantum Dot ZnO Nanowire Solar Cells Aimed at Tandem Solar Cells

机译:短波红外PBS胶体量子点ZnO纳米线太阳能电池针对串联太阳能电池

获取原文

摘要

Solution-processed tandem solar cells, that stack two or more single junction subcells with different band gaps to harvest photons in the full solar spectrum more efficiently, have attracted increasing attention recently. Organic photovoltaics and perovskite solar cells are promising candidates for the top and/or middle subcells of tandem solar cells because the solar cells are able to capture visible and near-infrared photon energy. However, there are few materials to choose from for the infrared bottom subcell. While PbS and PbSe colloidal quantum dots (CQDs) have been gaining much attention for short-wave infrared solar cells owing to their wide-range bandgap tunability and solution process compatibility. Among various CQD-based solar cells, PbS/ZnO depleted heterojunction solar cells showed a power conversion efficiency (PCE) over 13% in 2020 (Nat. Commun. 2020, 11, 103). But there is a limited number of literatures reporting PbS-QD-based solar cells working in the low photon energy region (< 1.0 eV) where optical absorption of PbS QDs is weak. Thus, we have focused on PbS QD/ZnO nanowire (NW) structures with the aim of achieving efficient carrier transport and light absorption simultaneously (J. Phys. Chem. Lett. 2013, 4, 2455). We then investigated the performance of PbS QD/ZnO NW solar cells using PbS CQDs with the first exciton absorption peak locating in the short-wave infrared region. (ACS Energy Lett. 2017, 2, 2110). Here, we develop high efficiency infrared PbS CQDs solar cells aimed at the bottom subcell of tandem solar cells, and discuss the potential for the bottom subcell.
机译:解决方案处理的串联太阳能电池,该太阳能电池堆叠两个或更多个单结子单元,其具有不同的带空隙以更有效地在全太阳光谱中收获光子,最近引起了越来越多的关注。有机光伏和Perovskite太阳能电池是串联太阳能电池顶部和/或中/ /或中/或中间电池的候选者,因为太阳能电池能够捕获可见光和近红外光子能量。但是,有很少的材料可以选择用于红外底部子单元。虽然PBS和PBSE胶体量子点(CQDS)由于其宽范围的带隙可调性和解决方法兼容而导致短波红外太阳能电池的关注。在各种基于CQD的太阳能电池中,PBS / ZnO耗尽的异质结太阳能电池显示出2020年(NAT.Comper。2020,11,103)的功率转换效率(PCE)超过13%。但是,在低光子能量区(<1.0eV)中,有一个有限数量的基于PBS-QD的太阳能电池,其中PBS QD的光学吸收较弱。因此,我们专注于PBS QD / ZnO纳米线(NW)结构,目的是同时实现有效的载体传输和光吸收(J. Phys。Chem。Lett。2013,4,2455)。然后,使用PBS CQDS将PBS QD / ZnO NW太阳能电池与位于短波红外区域中定位的第一激子吸收峰的性能进行研究。 (ACS能源Lett。2017,2,2110)。在这里,我们开发了旨在串联太阳能电池底部子单元的高效红外线PBS CQDS太阳能电池,并讨论了底部子单元的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号