首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >Nitrogen-Doped Hierarchical Porous Carbon Derived from Bacterial Cellulose-Polyaniline Composite As High Performance Anode for Lithium-Ion Batteries
【24h】

Nitrogen-Doped Hierarchical Porous Carbon Derived from Bacterial Cellulose-Polyaniline Composite As High Performance Anode for Lithium-Ion Batteries

机译:衍生自细菌纤维素 - 聚苯胺复合材料的氮掺杂分层多孔碳作为锂离子电池的高性能阳极

获取原文

摘要

An ever increasing demand for high energy and high power rating Lithium-ion batteries (LIB) for electric hybrid vehicles persuaded the development of novel electrode materials with large storage capability and faster kinetic process. Carbon nanomaterials, owing to their unique and tunable physical and chemical properties, have been widely investigated as anode materials for LIBs. Diversified strategies involving the synthesis of carbon materials with hierarchical structures (morphology and porosity), and heteroatom doping have shown significant improvement in electrochemical performance of these carbon nanomaterials. In consideration to this, we hereby demonstrate the synthesis and utilization of hierarchical nitrogen-doped porous carbon structures derived from bacterial cellulose-polyaniline nano-composites as a promising anode material for LIBs. Microstructural analysis of the derived carbon revealed the inheritance of fibrous backbone as obtained from bacterial cellulose along with nano-granular structure of polyaniline. The structural and electrochemical properties of as-derived porous carbon structures are analysed systematically by performing XRD, Raman spectroscopy, XPS, cyclic voltammetry, galvanostatic charge/discharge studies and impedance spectroscopy. These results unveiled significantly large reversible capacities of 432, 233, and 127 mAh/g at 1, 5, and 10 C-rate respectively with excellent capacity retention. The energy and power densities of these hierarchical porous carbon structures were increased by 54% and 41% respectively when compared to pure bacterial cellulose derived carbon. This enhanced electrochemical performance may be attributed to the combined effect of interconnected micro-meso porous network of hard carbon along with nitrogen doping. The core-shell structure of this derived carbon accommodates the volume changes during lithium-ion insertion and de-insertion, rendering excellent cyclic stability even at high C rates without causing pulverization.
机译:用于电动混合动力车辆的高能量和高功率评级锂离子电池(LIB)的不断增长的需求说服了具有大存储能力的新型电极材料的开发和更快的动力学过程。由于其独特和可调谐的物理和化学性质,碳纳米材料已被广泛研究为LIBS的阳极材料。涉及具有等级结构(形态学和孔隙率)的碳材料合成的多样化策略,并且杂原子掺杂表现出这些碳纳米材料的电化学性能的显着改善。考虑到这一点,我们在此证明了衍生自细菌纤维素 - 聚苯胺纳米复合材料的分层氮掺杂多孔碳结构的合成和利用作为Libs的有望的阳极材料。衍生碳的微观结构分析显示从细菌纤维素和聚苯胺的纳米颗粒结构中获得的纤维骨架的遗传。通过进行XRD,拉曼光谱,XPS,循环伏安法,电镀电荷/放电研究和阻抗光谱来系统地分析衍生多孔碳结构的结构和电化学性质。这些结果分别在1,5和10个C速率下揭开了432,233和127mAh / g的显着较大的可逆容量,具有优异的容量保持。与纯细菌纤维素衍生的碳相比,这些等级多孔碳结构的能量和功率密度分别增加了54%和41%。这种增强的电化学性能可能归因于互连的微小孔网络硬碳与氮掺杂的组合效果。该衍生碳的核心壳结构可容纳锂离子插入和去插入期间的体积变化,即使在高C速率下也能够在不引起粉碎的情况下实现优异的循环稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号