首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >(Invited) Thermal and Electrical Conductivity of Carbon Nanotube Network Materials: Theoretical Analysis and Mesoscopic Simulations
【24h】

(Invited) Thermal and Electrical Conductivity of Carbon Nanotube Network Materials: Theoretical Analysis and Mesoscopic Simulations

机译:(邀请的)碳纳米管网络材料的热电导和导电性:理论分析和介观模拟

获取原文

摘要

A general framework for theoretical analysis and numerical calculations of the effective thermal and electrical conductivity of homogeneous and isotropic disordered materials composed of carbon nanotubes (CNTs) is developed. The model utilizes similarity in the mathematical description of thermal and electrical transport in nanotube materials. The analysis accounts for both the inter-tube contact conductance and intrinsic conductivity of CNTs, and is performed in a wide space of governing parameters that includes the fiber aspect ratio, Biot number calculated for a single contact between nanotubes, and density ranging from values corresponding to the percolation threshold up to those characteristic of dense fiber networks. For dense networks, exact theoretical equations for the effective conductivity of materials composed of nanotubes with arbitrary aspect ratio and Biot number are derived. The effect of the intrinsic conductivity of nanotubes on the thermal and electrical transport is found to depend on the density of inter-tube contacts and, thus, is usually significant in the dense materials. The theoretical finding are confirmed in large-scale simulations of quasi-two-dimensional CNT films and three-dimensional CNT aerogels, where nanotubes form continuous networks of intertwined bundles. The simulations are performed based on a mesoscopic model of CNT materials, where every nanotube is represented by a curved chain of stretchable cylindrical segments. The dependences of the conductivity on the CNT length, Biot number, and material density predicted in these simulations agree well with the scaling laws derived theoretically. The comprehensive theoretical description developed in this work can facilitate tailoring thermal and electrical conductivity of CNT materials to the needs of practical applications by varying the material density, CNT length, and aspect ratio. Financial support for this work is provided by the National Aeronautics and Space Administration (NASA) through an Early Stage Innovations grant from NASA's Space Technology Research Grants Program (grant NNX16AD99G). A.N.V. also acknowledges support from the National Science Foundation through the CAREER award CMMI-1554589.
机译:开发了由碳纳米管(CNT)组成的均匀和各向同性无序材料的有效热和导电性的理论分析和数值计算的一般框架。该模型利用纳米管材料中热和电气传输的数学描述中的相似性。该分析占CNT的管间接触电导和固有电导率,并且在包括光纤纵横比的宽空间内进行,该光纤纵横比对于纳米管之间的单个接触和从相应的值的密度计算的光纤宽高比。渗透阈值达到致密光纤网络的那些特征。对于致密的网络,推导了由具有任意纵横比和Biot数组成的纳米管组成的材料有效电导率的精确理论方程。发现纳米管的固有电导率对热和电气传输的影响取决于管间触点的密度,因此在致密材料中通常是显着的。在准二维CNT膜和三维CNT气凝胶的大规模模拟中确认了理论发现,其中纳米管形成连续的交织束网络。基于CNT材料的介观模型进行模拟,其中每个纳米管由弯曲的可拉伸圆柱形段的弯曲链表示。在这些模拟中预测的CNT长度,Biot数和材料密度的依赖性与理论上得出的缩放法律相得益彰。在本工作中开发的综合理论描述可以通过改变材料密度,CNT长度和纵横比来促进CNT材料的热量和导电性以实现实际应用的需要。美国国家航空航天局(NASA)提供了对这项工作的财政支持,通过美国宇航局的太空技术研究补助计划的早期阶段创新授权(Grant NNX16AD99G)。 A.n.v.还通过职业奖CMMI-1554589认识到国家科学基金会的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号