首页> 外文会议>Saint Petersburg International Conference on Integrated Navigation Systems >GNSS /INS INTEGRATED SYSTEM: EXPERIMENTAL RESULTS AND APPLICATIONS IN MOBILE ROBOTS CONTROL
【24h】

GNSS /INS INTEGRATED SYSTEM: EXPERIMENTAL RESULTS AND APPLICATIONS IN MOBILE ROBOTS CONTROL

机译:GNSS / INS集成系统:移动机器人控制中的实验结果和应用

获取原文

摘要

Two systems are described in this paper. The first system is based on four dual-band GNSS (L1+L2 GPS + GLONASS) receiver boards. This system provides 3D attitude and RTK position, as well as the Doppler-based velocity. The system is augmented by an IMU block of low cost inertial sensors comprising three MEMS gyroscopes, three MEMS accelerometers, ADC, and processor. The use of the IMU block in combination with the GNSS attitude sensor makes it possible to update the attitude and position estimation at the 100 - 200 Hz rate, and to improve accuracy owing to smoothing GNSS related noise. The numerical scheme of the filtering, as well as a model of biases, is described. Testing results obtained in aircraft flights are described. Another system described in the paper consists of a single dual-band GNSS receiver and the INS block. The single antenna architecture significantly restricts the ability of the GNSS component to observe the attitude. Moreover, to observe two angles - pitch and heading - from the GNSS velocity vector, the system is assumed to be subjected to an additional non-holonomic constraint. In terms of the dynamics of the wheeled mobile robots, like cars or tractors, the nonholonomic constraint means movement without cross-track slippage. Even under the presence of this constraint, the third angle - roll - is still not observable from the GNSS data. The problem of the control of the wheeled mobile robot is also considered in the paper. The control goal is to force the target point of the robot to follow a certain trajectory by applying controls to the front wheels. The vehicle must find the desired path from an arbitrary initial position and orientation. Synthesis of a control algorithm based on the feedback linearization concept is presented in the paper.
机译:本文描述了两个系统。第一系统基于四个双频GNSS(L1 + L2 GPS + Glonass)接收器板。该系统提供3D姿态和RTK位置,以及基于多普勒的速度。该系统由低成本惯性传感器的IMU块增强,包括三个MEMS陀螺仪,三个MEMS加速度计,ADC和处理器。使用IMU块与GNSS态度传感器的使用使得可以在100 - 200 Hz速率下更新姿态和位置估计,并且由于平滑GNSS相关噪音,提高准确性。描述了过滤的数值方案,以及偏置模型。描述了在飞机飞行中获得的测试结果。本文中描述的另一个系统包括单个双频GNSS接收器和INS块。单个天线架构显着限制了GNSS组件观察姿态的能力。此外,为了观察来自GNSS速度向量的两个角度 - 间距和标题,假设系统经受额外的非完全约束。就轮式移动机器人的动态而言,像汽车或拖拉机一样,非完整约束意味着没有交叉滑动的运动。即使在该约束的存在下,第三角辊 - 仍然没有从GNSS数据观察到。在纸上还考虑了轮式移动机器人的控制的问题。控制目标是通过将控制器应用于前轮来强制机器人的目标点遵循一定的轨迹。车辆必须从任意初始位置和方向找到所需的路径。本文介绍了基于反馈线性化概念的控制算法的合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号