首页> 外文会议>MWWD amp; IEMES 2012 >Thermal dispersion study: a case study in the Tyrrhenian Sea
【24h】

Thermal dispersion study: a case study in the Tyrrhenian Sea

机译:热扩散研究:第勒尼安海的案例研究

获取原文
获取原文并翻译 | 示例

摘要

Planned harbour modifications imply the relocation of a sea water intake and –outfall, which is needed for the cooling of a power plant.rnCooling water plumes can travel long distances from the discharge site. As the installation needs to comply with environmentalrnregulations and because recirculation of cooling water can impose problems for the power plant, the dispersion of the cooling waterrnplume needs to be looked upon and is investigated by using a numerical model. Both near field and far field modelling of the outfall isrnexecuted. At first the near field is modelled to estimate the initial dilution of the plume. These results are implemented in a 3Drnhydrodynamic model of the region. Domain decomposition is applied in this model. Domain decomposition is the technique in which arnmodel is divided into smaller domains which are computed in parallel, thus attaining high precision in the area of interest, while thernsimulation time is kept reasonable. After data analysis, realistic worst case scenarios are identified. Then a period in the historic data isrnselected that corresponded to each specific worst case scenario. The selected periods are used for the calibration of the model, byrncomparing the results of the simulations with available temperature measurements at 1 km away of the outlet location. Finally thernscenarios are simulated for the present configuration and for the future configuration and for an alternative configuration to evaluaternthe change in plume geometry and dispersion after the planned harbour modification.rnIn the future configuration the outfall is located outside a harbour basin and the intake inside the harbour basin. In this situation arnsecond cooling water outlet of a nearby power plant is active, so possible interference of the plumes is important. For the futurernsituation, the conclusion is that due to various wind conditions, cooling water originating from the outfall will be transported into thernharbour basin. Depending on those wind conditions the warm water will stay at the water surface or mix up with the upper layers of thernbasin. During particular unfavourable situations it cannot be excluded that further vertical mixing may occur, leading to higher waterrntemperatures near the intake location near the bed. Problems of heat accumulation in the harbour basin and possible influence of thernsecond outfall on the intake temperatures would be avoided when the intake position would be placed in the alternative position,rnoutside the harbour breakwater. At the alternate intake location outside the harbour basin both the temperature at the intake levelrn(near bed) and the temperature at the intermediate water depth are mostly unaffected by the plume and minimal recirculation isrnexpected. Moreover, there is no effect or interference of the second outfall on the alternative intake location.rnThe numerical model makes a realistic assessment of the thermal dispersion of the cooling water plume possible. The suggestedrnconfigurations are evaluated on possible recirculation risks and compliance with the environmental legislation. Furthermore, the resultsrnof the numerical model help to improve the design of the cooling water intake and outfall.
机译:计划中的港口修整意味着对进水口和出水口进行搬迁,这是电厂冷却所必需的。冷却水柱可以从排放点经过很长一段距离。由于设备需要符合环境法规,并且由于冷却水的再循环会给发电厂带来问题,因此需要研究冷却水的扩散,并使用数值模型进行研究。出口的近场和远场建模都将执行。首先,对近场建模以估计羽流的初始稀释度。这些结果在该区域的3Drnhydrodynamic模型中实现。在该模型中应用领域分解。领域分解是将arnmodel分成并行计算的较小领域的技术,从而在感兴趣的区域中获得了较高的精度,同时保持了合理的模拟时间。经过数据分析,确定了实际的最坏情况。然后,选择历史数据中对应于每个特定最坏情况场景的时间段。通过将模拟结果与出口位置1 km处的可用温度测量值进行比较,将选定的时间段用于模型校准。最后,模拟了当前配置和未来配置以及替代配置的情景,以评估计划的港口改造后羽流几何形状和扩散的变化.rn在未来配置中,排污口位于港口盆地外部,而进气口位于港口内部盆地。在这种情况下,附近发电厂的冷却水出口处于活动状态,因此羽流的可能干扰非常重要。对于未来的情况,结论是由于各种风况,来自排污口的冷却水将被输送到海港盆地。根据那些风的条件,温水将停留在水面或与地贝纳的上层混合。在特定的不利情况下,不能排除可能发生进一步的垂直混合,从而导致靠近床的进水口附近的较高的水温。当将进气口放置在港口防波堤外的其他位置时,可以避免港湾流域内的热量积聚和第二次排污口对进气温度的可能影响。在港湾盆地外部的备用进水口处,进水水位(近床层)的温度和中间水深处的温度都几乎不受羽流的影响,并且预计再循环最少。此外,第二排放口对替代进气口位置没有影响或干扰。数值模型可以对冷却水羽流的热扩散进行实际评估。建议的配置将根据可能的再循环风险和是否符合环境法规进行评估。此外,数值模型的结果有助于改进冷却水进水口和排水口的设计。

著录项

  • 来源
    《MWWD amp; IEMES 2012》|2012年|1-14|共14页
  • 会议地点 Montenegro(ME)
  • 作者单位

    IMDC (International Marine and Dredging Consultants)- Coveliersstraat 15, B-2600 Antwerp, Belgium- +32 3 270 92 54 -Wieter.Boone@imdc.be;

    IMDC - Coveliersstraat 15, B-2600 Antwerp, Gijsbert.VanHolland@imdc.be;

    Morphology and Dredging Group, IMDC - Coveliersstraat 15, B-2600 Antwerp,Belgium- Marc.Sas@imdc.be;

    Tractebel Engineering S.p.A.- Via Mario Bianchini 60, Rome – Italy -pasquale.palmieri@gdfsuez.com;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermal plume; numerical modelling; outfall; power plant;

    机译:热羽;数值模拟;排污口;电厂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号