首页> 外文会议>Nano- and Microelectromechanical Systems (NEMS and MEMS) and Molecular Machines >Interfacial Effects on the Premature Failure of Polycrystalline Silicon Structural Films
【24h】

Interfacial Effects on the Premature Failure of Polycrystalline Silicon Structural Films

机译:界面对多晶硅结构膜过早失效的影响

获取原文
获取原文并翻译 | 示例

摘要

Although bulk silicon is not known to be susceptible to cyclic fatigue, micron-scale structures made from mono and polycrystalline silicon films are vulnerable to degradation by fatigue in ambient air environments. Such silicon thin films are used in small-scale structural applications, including microelectromechanical systems (MEMS), and display "metal-like" stress-life (S/N) fatigue behavior in room temperature air environments. Previously, the authors have observed fatigue lives in excess of 10~(11) cycles at high frequency (~40 kHz), fully-reversed stress amplitudes as low as half the fracture strength using a surface micromachined, resonant-loaded, fatigue characterization structures. Stress-life fatigue, transmission electron microscopy, infrared microscopy, and numerical models were used to establish that the mechanism of the fatigue failure of thin-film silicon involves the sequential oxidation and environmentally-assisted crack growth solely within the native silica layer, a process that we term "reaction-layer fatigue". Only thin films are susceptible to such a failure mechanism because the critical crack size for catastrophic failure of the entire silicon structure can be exceeded by a crack solely within the native oxide layer. The importance of the interfacial geometry on the mechanics of the reaction-layer fatigue mechanism is described.
机译:尽管不知道大块硅容易受到循环疲劳的影响,但是由单晶和多晶硅膜制成的微米级结构很容易因周围空气环境中的疲劳而退化。这种硅薄膜用于包括微机电系统(MEMS)在内的小规模结构应用中,并在室温空气环境中表现出“类金属”应力寿命(S / N)疲劳行为。以前,作者已经观察到在高频(〜40 kHz)下,疲劳寿命超过10〜(11)个循环,使用表面微加工,共振加载,疲劳表征结构,应力强度完全反转,断裂强度低至断裂强度的一半。 。应力寿命疲劳,透射电子显微镜,红外显微镜和数值模型被用于建立薄膜硅疲劳失效的机制,仅涉及在天然二氧化硅层内的顺序氧化和环境辅助的裂纹扩展,这一过程我们称之为“反应层疲劳”。仅薄膜易受这种破坏机制的影响,这是因为整个硅结构的灾难性破坏的临界裂纹尺寸可以被仅在本征氧化物层内的裂纹所超过。描述了界面几何形状对反应层疲劳机理力学的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号