首页> 外文会议>Nanomaterial Synthesis and Integration for Sensors, Electronics, Photonics, and Electro-Optics; Proceedings of SPIE-The International Society for Optical Engineering; vol.6370 >Lanthanide complexes with more intense luminescence: A strategy for the formation of polymetallic lanthanide dendrimer complexes and semiconductor nanocrystal compounds
【24h】

Lanthanide complexes with more intense luminescence: A strategy for the formation of polymetallic lanthanide dendrimer complexes and semiconductor nanocrystal compounds

机译:具有更强发光的镧系元素络合物:形成多金属镧系元素树枝状聚合物络合物和半导体纳米晶体化合物的策略

获取原文
获取原文并翻译 | 示例

摘要

The luminescence arising from lanthanide cations offers several advantages over organic fluorescent molecules: sharp, distinctive emission bands allow for easy resolution between multiple lanthanide signals; long emission lifetimes (us -ms) make them excellent candidates for time-resolved measurements; and high resistance to photo bleaching allow for long or repeated experiments. In order to obtain luminescence from lanthanide cations, the cation must be located at close distance to a suitable sensitizer ("antenna"). Two similar methods have been used in our group to develop more efficient lanthanide complexes based on a polymetallic approach to obtain lanthanide compounds with improved luminescence efficiency. The first method involves using dendrimers to combine multiple antennae groups and several lanthanide cations into the same discrete molecule. The second approach involves doping CdSe semiconductor nanocrystals with luminescent terbium cations to use the nanocrystal electronic structure as an antenna to sensitize lanthanide cations. Using nanocrystals as antennae provides a superior way to protect the lanthanide cations from non-radiative deactivations, while providing a variety of controlled donating energy levels. In both methods, it is possible to incorporate several lanthanide metal cations into each dendrimer or nanocrystal, thus increasing the number of emitters and the resulting luminescence intensity of the species.
机译:与有机荧光分子相比,镧系元素阳离子产生的发光具有多个优势:清晰,独特的发射带使多个镧系元素信号之间的分辨变得容易;较长的发射寿命(us -ms)使其成为时间分辨测量的理想选择;高抗光漂白性允许长时间或重复的实验。为了从镧系元素阳离子获得发光,该阳离子必须与合适的敏化剂(“天线”)相距很近。在我们的小组中,已经使用了两种相似的方法来开发基于多金属方法的更有效的镧系元素络合物,从而获得具有提高的发光效率的镧系元素化合物。第一种方法涉及使用树枝状聚合物将多个触角基团和几个镧系元素阳离子结合到同一离散分子中。第二种方法涉及用发光ter阳离子掺杂CdSe半导体纳米晶体,以将纳米晶体电子结构用作天线来敏化镧系离子。使用纳米晶体作为触角可提供一种出色的方法来保护镧系元素阳离子免于非辐射失活,同时提供多种受控的供能水平。在这两种方法中,都有可能将几种镧系元素金属阳离子掺入每个树枝状聚合物或纳米晶体中,从而增加发射体的数量并增加物种的发光强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号