首页> 外文会议>Nanomechanical testing in materials research and development V >Some Recent Advances in Nanomechanical Testing: High Strain Rates, Variable Temperatures, Fatigue and Stress Relaxation, Combinatorial Experimentation
【24h】

Some Recent Advances in Nanomechanical Testing: High Strain Rates, Variable Temperatures, Fatigue and Stress Relaxation, Combinatorial Experimentation

机译:纳米力学测试的一些最新进展:高应变速率,可变温度,疲劳和应力松弛,组合实验

获取原文
获取原文并翻译 | 示例

摘要

In the first part of the talk, I will present two recently developed platforms for high temperature nanomechanical testing. The first platform allows for variable temperature and variable strain rate testing of micropillars in situ in the scanning electron microscope. By utilizing an intrinsically displacement-controlled micro-compression setup, which applies displacement using a miniaturized piezo-actuator, we've recently extended the attainable range of strain rates to up to~ 10~3s~(-1), and enabled cyclic loading up to 10~7 cycles and load relaxation tests. Stable, variable temperature indentation/micro-compression in the range of -45℃ to 600℃ is achieved through independent heating and temperature monitoring of both the indenter tip and sample and by cooling the instrument frame. A second system allows for measurements at lower loads ex-situ in a dedicated vacuum chamber in the range of -150 ℃ to 700 ℃. The cryo temperature is achieved by means of a liquid nitrogen line, while the high temperature is generated by three independent heat sources for the sample and the two tips of the differential displacement measurement system, establishing an infrared bath in the measurement area.
机译:在演讲的第一部分中,我将介绍两个最近开发的用于高温纳米机械测试的平台。第一个平台允许在扫描电子显微镜中对微柱进行可变温度和可变应变率测试。通过使用固有位移控制的微压缩设置,该设置使用微型压电执行器进行位移,最近我们将可达到的应变速率范围扩展到了约10〜3s〜(-1),并实现了循环加载最多10〜7个循环和负载松弛测试。通过对压头和样品进行独立的加热和温度监控以及对仪器框架进行冷却,可以在-45℃至600℃的范围内实现稳定的可变温度压痕/微压缩。第二个系统允许在-150℃至700℃范围内的专用真空室内以较低的异位负载进行测量。低温是通过液氮管线实现的,而高温是通过三个独立的热源为样品和差分位移测量系统的两个尖端产生的,从而在测量区域中建立了一个红外浴。

著录项

  • 来源
  • 会议地点 Albufeira(PT)
  • 作者单位

    Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland;

    Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland;

    Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland;

    Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland;

    Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland;

    Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland;

    Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602, Switzerland;

    Laboratory for Nanometallurgy, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8005, Switzerland;

    Alemnis Gmbh, Feuerwerkerstrasse 39, Thun 3602, Switzerland;

    Alemnis Gmbh, Feuerwerkerstrasse 39, Thun 3602, Switzerland;

    Anton Paar TriTec SA, Rue de la Gare 4 Galileo Center, 2034 Peseux, Switzerland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号