首页> 外文会议>Nonlinear Optics and Its Applications VIII; and Quantum Optics III >Slow Light in Evanescently-Coupled Optical Cavities Containing Quantum Dots
【24h】

Slow Light in Evanescently-Coupled Optical Cavities Containing Quantum Dots

机译:包含量子点的E逝耦合光腔中的慢光。

获取原文
获取原文并翻译 | 示例

摘要

Ability to tune the group velocity of a light pulse is of great importance for optical communication applications and realization of quantum information processing. Tunability of group velocity can be achieved by using either optical or electronic resonances. Tunability of an optical resonance depends on the change in refractive index of the cavity material. However, since electro-optical coefficients of non-engineered materials are quite small, the tuning range of optical resonances by electric field is narrow. This makes tuning by electric field impractical for most applications. Quantum dot (QD) coupled to a photonic crystal cavity is a useful hybrid system exhibiting nonlinear features. In this work, we analyze the use of quantum dot - optical cavity hybrid systems to engineer nonlinear waveguides susceptible to electric fields. We start by theoretically analyzing the optical pulse propagation at low-photon number excitation limit in a periodically arranged strongly coupled quantum dot - photonic crystal system. A one dimensional periodic array of evanescently coupled photonic cavities (coupled resonator optical waveguides, CROWs) containing non-interacting quantum dots allows us to tune the group velocity and the bandwidth of the pulse by adjusting the cavity/QD coupling. Tunable group velocity can be achieved by applying an external electric field which will result in a significant decrease in the cavity/QD coupling because of DC Stark effect. We also show that, using this approach, light pulses can be slowed down or stored by compressing the pulse bandwidth adiabatically and reversibly. Adiabatic bandwidth compression can be achieved by slowly decreasing the coupling strength when the light pulse is inside the coupled resonator optical waveguide. The energy splitting and the coupling constant after applying electric field is calculated by using perturbation theory for two level systems. With our approach, nonlinear materials highly susceptible to electric fields can be engineered in low-excitation regime.
机译:调节光脉冲的群速度的能力对于光通信应用和实现量子信息处理非常重要。可以通过使用光学或电子共振来实现群速度的可调性。光共振的可调谐性取决于腔体材料的折射率变化。但是,由于非工程材料的电光系数非常小,因此电场引起的光共振的调谐范围狭窄。对于大多数应用而言,这使得通过电场进行调节变得不切实际。耦合到光子晶体腔的量子点(QD)是一种有用的混合系统,具有非线性特征。在这项工作中,我们分析了使用量子点-光腔混合系统来设计对电场敏感的非线性波导的方法。我们从理论上分析周期性排列的强耦合量子点-光子晶体系统中低光子数激发极限下的光脉冲传播。包含非相互作用量子点的e逝耦合光子腔(耦合谐振腔光波导,CROW)的一维周期性阵列使我们能够通过调整腔/ QD耦合来调整群速度和脉冲带宽。可以通过施加外部电场来实现可调整的组速度,这将由于DC Stark效应而导致空腔/ QD耦合显着降低。我们还表明,使用这种方法,可以通过绝热和可逆地压缩脉冲带宽来减慢或存储光脉冲。当光脉冲在耦合谐振器光波导内部时,可以通过缓慢降低耦合强度来实现绝热带宽压缩。利用摄动理论,对两级系统施加了电场后的能量分裂和耦合常数。通过我们的方法,可以在低激励条件下设计对电场高度敏感的非线性材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号