首页> 外文会议>Offshore technology conference >Horn Mountain Spar Risers – Evaluation of Tension and Installation Requirements for Deepwater Dry Tree Risers
【24h】

Horn Mountain Spar Risers – Evaluation of Tension and Installation Requirements for Deepwater Dry Tree Risers

机译:霍恩山晶石立管–评估深水干树立管的张力和安装要求

获取原文
获取原文并翻译 | 示例

摘要

The development of dry-tree vessel technology and therninstallation of several Spar systems in increasingly deep waterrnin the Gulf of Mexico has led to the parallel evolution ofrnseveral designs of dry-tree risers, most of which rely on airrncans to provide top tension. These risers typically consist ofrnmultiple concentric pipes, with production risers configured asrnproduction tubing within a single or dual casing steel riserrnconstruction. The tension applied to the top of each pipe mustrnbe enough to prevent damage through buckling of either thernriser or tubing under all installation, operation and workoverrnconditions, while still providing a margin of safety variousrndamaged conditions. The sum of these tensions determine therncapacity of the tensioning system required for all relevantrnloading conditions, without overstressing the riser or tubing inrndesign sea states.rnTo evaluate the tension requirements and the distributionrnof tension between constituent pipes, a rational approach hasrnbeen developed and successfully applied to BP’s HornrnMountain Spar dual casing riser system, which at 5,423ftrnrepresents the deepest Spar riser system to date. The approachrnuses finite element multi-tube analysis to determine thernrelative elongation and load sharing between the tubing, innerrnriser and outer riser under all load conditions. Riser andrntubing elongation, internal fluid effects, seawater & riserrntemperature distributions under installation and operatingrnconditions are all considered as part of this approach. Thisrnapproach implicitly considers the 3-D riser and wellbayrngeometry and the wellhead elevation at each of the subsearnwell locations.rnAs part of installation planning, this approach has beenrnused to confirm the air can tensioning system capacity,rnchamber size and redundancy requirements; predict air canrnelevations and buoyancy requirements at each stage of riserrninstallation; and establish riser and tubing tensions along withrnrelative stretch requirements to land each string in the surfacernwellhead system to ensure the appropriate in-servicerndistributions of tensions for all service conditions.
机译:干树船技术的发展以及在墨西哥湾越来越深的水域中安装几个Spar系统导致了干树立管的几种设计的并行发展,其中大多数设计都依靠aircancans提供最大的张力。这些立管通常由多根同心管组成,生产立管配置为单套管或双套管钢立管结构内的生产管。在所有安装,操作和维修条件下,施加在每根管子顶部的张力必须足够大,以防止因热敏电阻或管子的弯曲而造成损坏,同时在各种损坏条件下仍具有一定的安全裕度。这些张力的总和决定了所有相关载荷条件所需的张紧系统的能力,而不会在设计海况下对立管或油管造成过大压力。为了评估张力要求和组成管道之间的分配张力,已经开发出一种合理的方法并将其成功地应用于BP公司。 HornrnMountain Spar双套管立管系统,其高度为5,423英尺,代表了迄今为止最深的Spar立管系统。该方法使用有限元多管分析法来确定在所有载荷条件下油管,内部上升器和外部立管之间的相对伸长率和载荷分配。在安装和操作条件下,竖管和竖管的伸长率,内部流体效应,海水和上升温度分布都被视为此方法的一部分。这种方法隐含地考虑了3D立管和井架的几何形状以及每个子缝井位置的井口高程。预测立管安装每个阶段的空气弯管和浮力要求;并根据相关的拉伸要求确定立管和油管的张力,以将每根柱子降落在地面井口系统中,以确保在所有使用条件下张力在运行中的适当分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号