首页> 外文会议>Optical Coherence tomography and coherence domain optical methods in biomedicine XX >Coarse-Grained and Fine-Grained Parallel Optimization for Real-Time En-Face OCT Imaging
【24h】

Coarse-Grained and Fine-Grained Parallel Optimization for Real-Time En-Face OCT Imaging

机译:实时面部OCT成像的粗粒和细粒并行优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and finegrained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus achieves maximum parallelism. The performance and scalability of the CPU-based and GPU-based parallel approaches are analyzed and compared. The quality and the resolution of the images generated by the CFD method and the MSI method are also discussed and compared.
机译:本文介绍了正面(C扫描)光学相干断层扫描(OCT)显示器中的并行优化。与横截面(B扫描)图像相比,由于由数字信号处理(DSP)算法处理的数据量增加,因此,面对面图像的生成在计算上要求更高。 DSP的顺序实现导致有限数量的实时生成的面部图像。在OCT应用中,需要同时从多个深度生成大量的面部图像,例如实时诊断以及手术和消融的监测。在顺序计算中,此要求导致处理数据和生成图像的时间显着增加。结果,处理时间超过了获取时间,并且图像生成不是实时的。在这些情况下,由于无法实时生成面部图像,因此OCT系统无效。 DSP算法的并行优化为该问题提供了解决方案。研究了基于粗粒度中央处理器(CPU)和基于细粒度图形处理器(GPU)的常规傅里叶域(CFD)OCT方法和主从干涉(MSI)OCT方法的并行实现。在粗粒度CPU实现中,每个并行线程处理整个OCT帧并生成单个正面图像。相应的细粒度GPU实现为OCT帧中的每个数据点启动一个并行线程,从而实现了最大的并行度。分析和比较了基于CPU和基于GPU的并行方法的性能和可伸缩性。还讨论并比较了CFD方法和MSI方法生成的图像的质量和分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号