首页> 外文会议>Optical microlithography XXVI >Lithographic challenges and their solutions for critical layers in sub-14nm node logic devices
【24h】

Lithographic challenges and their solutions for critical layers in sub-14nm node logic devices

机译:14纳米以下节点逻辑器件中关键层的光刻挑战及其解决方案

获取原文
获取原文并翻译 | 示例

摘要

When the technology node of logic devices is sub-14nm, finding lithographic solutions for most of the critical layers is challenging. For instance, metal 1 interconnect layer is one of the most lithographically difficult layers in a logic design, not only owing to its two-dimensional topology with irregular geometric shapes but also owing to the small minimum pitches in two orientations. A double pattern technology with 193nm immersion is insufficient to resolve the critical features at the minimum pitch. Only 23% cell shrinkage, with respect to a 16/14nm-node design, is predicted by examining most of the crucial lithographic metrics. To archive an expected cell shrinkage of approximately 50% for the next node, immersion technology with more than a double split pitch, such as triple patterning technology, appears to be able to drive the minimum pitch to satisfy sub-14nm-node lithographic requirements; however, process complexity and cost are unavoidably higher. Analyses herein of the lithographic metrics reveal that a common process window and CD uniformity do not fully suffice for the lithographic process. The main cause of this failure is a very large best focus shift among the critical features due to the 3D mask effect. Reducing the wavelength of the light source to 13.5nm in the extreme ultraviolet range dramatically improves image resolution, the process window and the CD uniformity even with traditional illumination source shapes. Selection of lithographic solution for each critical layer is relevant, considering image performance, design style and constraints, process integration, running cost, and other factors.
机译:当逻辑器件的技术节点低于14nm时,为大多数关键层寻找光刻解决方案将具有挑战性。例如,金属1互连层是逻辑设计中最难光刻的层之一,这不仅是由于其具有不规则几何形状的二维拓扑结构,而且还因为在两个方向上的最小最小间距。具有193nm浸没的双图案技术不足以最小间距解决关键特征。通过检查大多数关键的光刻指标,相对于16 / 14nm节点设计,只有23%的单元收缩预计。为了将下一个节点的预期单元收缩缩小到大约50%,浸入式技术的间距大于两倍,例如三重图案化技术,似乎能够驱动最小间距以满足14nm以下节点的光刻要求;然而,过程复杂性和成本不可避免地更高。本文对光刻度量的分析表明,共同的工艺窗口和CD均匀性不足以完全满足光刻工艺的要求。导致此失败的主要原因是由于3D蒙版效果,关键功能之间的最佳焦点偏移非常大。即使在使用传统光源形状的情况下,在极紫外范围内将光源的波长减小到13.5nm仍可显着提高图像分辨率,处理窗口和CD均匀性。考虑图像性能,设计风格和约束条件,工艺集成,运行成本以及其他因素,为每个关键层选择光刻解决方案都非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号