首页> 外文会议>Optical trapping and optical micromanipulation X >Plasmonic nanotweezers based on Au bowtie nanoantenna arrays for manipulation of nano-to-macroscopic objects
【24h】

Plasmonic nanotweezers based on Au bowtie nanoantenna arrays for manipulation of nano-to-macroscopic objects

机译:基于金领结纳米天线阵列的等离子纳米镊子,用于处理从纳米到宏观的物体

获取原文
获取原文并翻译 | 示例

摘要

Plasmonic optical traps, or plasmonic "nanotweezers", have emerged as an attractive alternative for optical manipulation because they circumvent the diffraction limit, producing highly confined and enhanced fields that both relax constraints for microparticle manipulation and offer a route for improving uanoparticle trapping. Here, we present an overview of the use of Au bowtie nanoantenna arrays (BNAs) for plasmonic nanotweezers. We show that optical absorption by the BNAs creates convection currents that resemble a Rayleigh-Benard pattern and that an absorptive substrate, e.g. Indium-Tin-Oxide, is crucial to achieve large convection velocities. Furthermore, we demonstrate phase-like behavior of trapped particles and that the adhesion layer material and nanostructure orientation strongly affect trapping behavior. In addition, we discuss the use of a femtosecond-pulsed source in plasmonic nanotweezers and demonstrate that the fs pulses (1) augment the near-field optical forces compared to comparable, continuous-wave nanotweezers, and (2) increase the diagnostic capabilities of plasmonic nanotweezers by providing access to the nonlinear optical response of trapped species. Finally, we show for the first time that plasmonic nanoantennas are an effective tool for manipulation objects up to at least 50 μm in diameter. Using low-numerical aperture illumination (0.25-0.6 NA), we show that manipulation of these "macroscopic" objects is facilitated by increasing the number of illuminated nanostructures participating in the trapping event. These results open up a new avenue for the usage of plasmonic nanotweezers and may have applications for manipulating Eukaryotic cells, studying self-organization/aggregation of cells, and micro-scale manufacturing.
机译:等离子光阱或等离激元“ nanotweezers”已经成为光学操纵的一种有吸引力的替代方法,因为它们规避了衍射极限,产生了高度受限和增强的场,既放松了对微粒操纵的限制,又提供了改善纳米粒子捕集的途径。在这里,我们提出了对等离子纳米镊子使用金领结纳米天线阵列(BNA)的概述。我们显示出BNA的光吸收会产生类似于瑞利-贝纳德(Rayleigh-Benard)模式的对流以及吸收性底物,例如铟锡氧化物对实现大对流速度至关重要。此外,我们证明了被困粒子的类相行为,并且粘附层材料和纳米结构的取向强烈影响了被困行为。此外,我们讨论了在等离子纳米镊子中使用飞秒脉冲源的情况,并证明了fs脉冲(1)与可比较的连续波纳米镊子相比,增加了近场光学力,并且(2)提高了飞秒脉冲源的诊断能力。等离子纳米镊子通过提供对被捕获物质的非线性光学响应的​​访问。最后,我们首次展示了等离子纳米天线是一种用于操纵直径至少为50μm的物体的有效工具。使用低数值孔径照明(0.25-0.6 NA),我们表明通过增加参与捕获事件的照明纳米结构的数量,可以方便地操纵这些“宏观”物体。这些结果为等离子纳米镊子的使用开辟了一条新途径,并且可能在操纵真核细胞,研究细胞的自组织/聚集以及微尺度制造方面具有应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号