首页> 外文会议>Photonics, devices, and systems V >All-Optical Multi-dimensional Imaging of Energy-Materials Beyond the Diffraction Limit
【24h】

All-Optical Multi-dimensional Imaging of Energy-Materials Beyond the Diffraction Limit

机译:超出衍射极限的能量材料的全光学多维成像

获取原文
获取原文并翻译 | 示例

摘要

Efficient, environmentally-friendly, harvesting, storage, transport and conversion of energy are some of the foremost challenges now facing mankind. An important facet of this challenge is the development of new materials with improved electronic and photonic properties. Nano-scale metrology will be important in developing these materials, and optical methods have many advantages over electrons or proximal probes. To surpass the diffraction limit, near-field methods can be used. Alternatively, the concept of imaging in a multi-dimensional space is employed, where, in addition to spatial dimensions, the added dimensions of energy and time allow to distinguish objects which are closely spaced, and in effect increase the achievable resolution of optical microscopy towards the molecular level. We have employed these methods towards the study of materials relevant to renewable energy processes. Specifically, we image the position and orientation of single carbohydrate binding modules and visualize their interaction with cellulose with ~ 10nm resolution, an important step in identifying the molecular underpinnings of bio-processing and the development of low-cost alternative fuels, and describe our current work implementing these concepts towards characterizing the ultrafast carrier dynamics (~ 100fs) in a new class of nano-structured solar cells, predicted to have theoretical efficiencies exceeding 60%, using femtosecond laser spectroscopy.
机译:高效,环保,能源的收集,存储,运输和转换是人类目前面临的最重要的挑战。这一挑战的一个重要方面是开发具有改善的电子和光子特性的新材料。纳米级计量学对开发这些材料很重要,光学方法比电子或近端探针具有许多优势。为了超过衍射极限,可以使用近场方法。可替代地,采用了在多维空间中成像的概念,其中,除了空间维之外,能量和时间的附加维还允许区分紧密间隔的物体,并实际上提高了光学显微镜可实现的分辨率分子水平。我们已将这些方法用于研究与可再生能源过程相关的材料。具体来说,我们对单个碳水化合物结合模块的位置和方向进行成像,并以约10nm的分辨率可视化它们与纤维素的相互作用,这是确定生物加工的分子基础和开发低成本替代燃料的重要步骤,并描述了我们目前的情况。他们使用飞秒激光光谱技术,实现了这些概念,以表征新型纳米结构太阳能电池中的超快载流子动力学(约100fs),预计理论效率将超过60%。

著录项

  • 来源
    《Photonics, devices, and systems V》|2011年|p.830619.1-830619.9|共9页
  • 会议地点 Prague(CS)
  • 作者单位

    Nanoscience and Nanoengineering, South Dakota School of Mines and Technology Rapid City, SD 57701;

    Nanoscience and Nanoengineering, South Dakota School of Mines and Technology Rapid City, SD 57701;

    Nanoscience and Nanoengineering, South Dakota School of Mines and Technology Rapid City, SD 57701;

    Nanoscience and Nanoengineering, South Dakota School of Mines and Technology Rapid City, SD 57701;

    Biosciences Center, National Renewable Energy Laboratory Golden, CO 80401;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程光学;
  • 关键词

    single molecule imaging; PALM; DOPI; cellulose; quantum dots; IBSC; solar cells;

    机译:单分子成像;棕榈; DOPI;纤维素量子点; IBSC;太阳能电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号