首页> 外文会议>Physics and simulation of optoelectronic devices XXIII >Modeling of optical amplifier waveguide based on silicon nanostructures and rare earth ions doped silica matrix gain media by a finite-difference time-domain method: comparison of achievable gain with Er~(3+) or Nd~(3+) ions dopants
【24h】

Modeling of optical amplifier waveguide based on silicon nanostructures and rare earth ions doped silica matrix gain media by a finite-difference time-domain method: comparison of achievable gain with Er~(3+) or Nd~(3+) ions dopants

机译:基于硅纳米结构和稀土离子掺杂二氧化硅基体增益介质的光放大器波导的有限差分时域方法建模:Er〜(3+)或Nd〜(3+)离子掺杂剂可实现的增益比较

获取原文
获取原文并翻译 | 示例

摘要

A comparative study of the gain achievement is performed in a waveguide optical amplifier whose active layer is constituted by a silica matrix containing silicon nanograins acting as sensitizer of either neodymium ions (Nd~(3+)) or erbium ions (Er~(3+)). Due to the large difference between population levels characteristic times (ms) and finite-difference time step (10~(-17)s), the conventional auxiliary differential equation and finite-difference time-domain (ADE-FDTD) method is not appropriate to treat such systems. Consequently, a new two loops algorithm based on ADE-FDTD method is presented in order to model this waveguide optical amplifier. We investigate the steady states regime of both rare earth ions and silicon nanograins levels populations as well as the electromagnetic field for different pumping powers ranging from 1 to 10~4 mW.mm~(-2). Furthermore, the three dimensional distribution of achievable gain per unit length has been estimated in this pumping range. The Nd~(3+) doped waveguide shows a higher gross gain per unit length at 1064 nm (up to 30 dB.cm~(-1)) than the one with Er~(3+) doped active layer at 1532 nm (up to 2 dB.cm~(-1)). Considering the experimental background losses found on those waveguides we demonstrate that a significant positive net gain can only be achieved with the Nd~(3+) doped waveguide. The developed algorithm is stable and applicable to optical gain materials with emitters having a wide range of characteristic lifetimes.
机译:对增益实现的比较研究是在波导光放大器中进行的,该光放大器的活性层由包含硅纳米颗粒的二氧化硅基质构成,该硅纳米颗粒用作钕离子(Nd〜(3+))或离子(Er〜(3+ ))。由于总体水平的特征时间(ms)与有限差分时间步长(10〜(-17)s)之间存在较大差异,因此传统的辅助差分方程和有限差分时域(ADE-FDTD)方法不适用治疗这类系统。因此,提出了一种新的基于ADE-FDTD方法的两回路算法,以对该波导光放大器进行建模。我们研究了从1到10〜4 mW.mm〜(-2)范围内的不同泵浦功率的稀土离子和硅纳米颗粒能级的稳态体系以及电磁场。此外,已经在该泵浦范围内估计了每单位长度可获得的增益的三维分布。掺Nd〜(3+)的波导在1064 nm处的每单位长度的总增益(高达30 dB.cm〜(-1))比在1532 nm处具有Er〜(3+)掺杂的有源层的单位长度更高(高达2 dB.cm〜(-1))。考虑到在这些波导上发现的实验背景损耗,我们证明只有使用Nd〜(3+)掺杂的波导才能获得显着的正净增益。所开发的算法是稳定的,适用于具有范围广泛的特征寿命的发射器的光学增益材料。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP), ENSICAEN, UMR 6252 CNRS, CEA/IRAMIS, Universite de Caen Cedex 4, 6 boulevard Marechal Juin, 14050 Caen, France;

    Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP), ENSICAEN, UMR 6252 CNRS, CEA/IRAMIS, Universite de Caen Cedex 4, 6 boulevard Marechal Juin, 14050 Caen, France;

    Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP), ENSICAEN, UMR 6252 CNRS, CEA/IRAMIS, Universite de Caen Cedex 4, 6 boulevard Marechal Juin, 14050 Caen, France;

    Centre de Recherche sur les Ions, les Materiaux et la Photonique (CIMAP), ENSICAEN, UMR 6252 CNRS, CEA/IRAMIS, Universite de Caen Cedex 4, 6 boulevard Marechal Juin, 14050 Caen, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ADE-FDTD; waveguide; rare earth; Si nanostructures; Gain; Computational methods; optical amplifier; silicon photonics;

    机译:ADE-FDTD;波导;稀土硅纳米结构;获得;计算方法;光放大器硅光子学;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号