首页> 外文会议>Reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications VII >Interactions of silica nanoparticles with therapeutics for oxidative stress attenuation in neurons
【24h】

Interactions of silica nanoparticles with therapeutics for oxidative stress attenuation in neurons

机译:二氧化硅纳米粒子与神经元中氧化应激减弱疗法的相互作用

获取原文
获取原文并翻译 | 示例

摘要

Oxidative stress plays a major role in many disease pathologies, notably in the central nervous system (CNS). For instance, after initial spinal cord injury, the injury site tends to increase during a secondary chemical injury process based on oxidative stress from necrotic cells and the inflammatory response. Prevention of this secondary chemical injury would represent a major advance in the treatment of people with spinal cord injuries. Few therapeutics are useful in combating such stress in the CNS due to side effects, low efficacy, or half-life. Mesoporous silica nanoparticles show promise for delivering therapeutics based on the formation of a porous network during synthesis. Ideally, they increase the circulation time of loaded therapeutics to increase the half-life while reducing overall concentrations to avoid side effects. The current study explored the use of silica nanoparticles for therapeutic delivery of anti-oxidants, in particular, the neutralization of acrolein which can lead to extensive tissue damage due to its ability to generate more and more copies of itself when it interacts with normal tissue. Both an FDA-approved therapeutic, hydralazine, and natural product, epigallocatechin gallate, were explored as anti-oxidants for acrolein with nanoparticles for increased efficacy and stability in neuronal cell cultures. Not only were the nanoparticles explored in neuronal cells, but also in a co-cultured in vitro model with microglial cells to study potential immune responses to near-infrared (NIRF)-labeled nanoparticles and uptake. Studies included nanoparticle toxicity, uptake, and therapeutic response using fluorescence-based techniques with both dormant and activated immune microglia co-cultured with neuronal cells.
机译:氧化应激在许多疾病病理中起主要作用,尤其是在中枢神经系统(CNS)中。例如,在最初的脊髓损伤之后,基于来自坏死细胞的氧化应激和炎症反应,在继发性化学损伤过程中,损伤部位倾向于增加。预防这种继发性化学损伤将代表治疗脊髓损伤的人的重大进步。由于副作用,功效低或半衰期,很少有疗法可用于抵抗中枢神经系统的此类压力。介孔二氧化硅纳米颗粒显示出有望在合成过程中基于多孔网络的形成来递送治疗剂。理想情况下,它们增加了负载型治疗剂的循环时间以延长半衰期,同时降低总浓度以避免副作用。当前的研究探索了使用二氧化硅纳米粒子治疗性输送抗氧化剂,特别是丙烯醛的中和作用,由于其与正常组织相互作用时能够生成越来越多的自身副本,因此可以导致广泛的组织损伤。 FDA批准的治疗药物肼苯哒嗪和天然产物表没食子儿茶素没食子酸酯都被用作丙烯醛与纳米颗粒的抗氧化剂,以提高神经元细胞培养的功效和稳定性。不仅在神经元细胞中探索了纳米颗粒,而且还在与小胶质细胞共培养的体外模型中研究了纳米颗粒,以研究对近红外(NIRF)标记的纳米颗粒和摄取的潜在免疫反应。研究包括使用基于荧光的技术,将休眠的和活化的免疫小胶质细胞与神经元细胞共培养,从而得出纳米颗粒的毒性,吸收和治疗反应。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Interdisciplinary Biomedical Sciences Program Birck Nanotechnology Center Purdue University, West Lafayette, Indiana,Interdisciplinary Biomedical Sciences Program Department of Basic Medical Sciences, School of Veterinary Medicine Purdue University, West Lafayette, Indiana;

    Interdisciplinary Biomedical Sciences Program Department of Basic Medical Sciences, School of Veterinary Medicine Purdue University, West Lafayette, Indiana,Interdisciplinary Biomedical Sciences Program Weldon School of Biomedical Engineering Purdue University, West Lafayette, Indiana;

    Interdisciplinary Biomedical Sciences Program Birck Nanotechnology Center Purdue University, West Lafayette, Indiana,Interdisciplinary Biomedical Sciences Program Weldon School of Biomedical Engineering Purdue University, West Lafayette, Indiana;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Silica nanoparticles; NIRF; nanomedicine; nanotoxicity; ROS; inflammation; spinal cord injury;

    机译:二氧化硅纳米粒子; NIRF;纳米医学纳米毒性ROS;炎;脊髓损伤;
  • 入库时间 2022-08-26 13:45:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号