首页> 外文会议>Sensor Technologies and Applications, 2009. SENSORCOMM '09 >On the Energy Consumption of Fast Convergecast in Wireless Networks
【24h】

On the Energy Consumption of Fast Convergecast in Wireless Networks

机译:无线网络中快速聚合广播的能耗

获取原文

摘要

Kesselman and Kowalski (JPDC '06) have proposed a simple distributed randomized algorithm for fast convergecast in wireless networks. The Kesselman-Kowalski algorithm works in a synchronized mode under the assumptions that all wireless nodes have variable transmission range, each can learn the distance to the closest active neighbor at any time, and all have a special collision detection (CD) capability so that a transmitting node can detect a collision within its transmission range.They prove that their algorithm finishes in O(log n) expected timeslots and that, assuming the nodes are located in a Euclidean plane, the total energy used is O(n log n) times the minimum energy of a (not necessarily fast) convergecast. They also provide instances where an Omega(n/log n) gap exists between the energy of any fast (that is, with O(log n) timeslots) convergecast, and the minimum energy convergecast. We prove that, when compared to the most energy efficient fast convergecast, the Kesselman-Kowalski algorithm uses O(log2 n) times the optimum energy. With the additional assumption that n, or a good estimate of it, is known, we modify the Kesselman-Kowalski algorithm such that it also finishes in O(log n) expected timeslots, and uses O(n) times the energy of a minimum energy convergecast. We also provide a centralized algorithm which produces a fast convergecast using n/log n times the minimum energy convergecast. All the above bounds (including those from Kesselman-Kowalski) assume that the energy spent for sending a packet from a node to another is proportional to |u, u2| (the square of the Euclidean distance).
机译:Kesselman和Kowalski(JPDC '06)提出了一种简单的分布式随机算法,用于无线网络中的快速收敛广播。 Kesselman-Kowalski算法在所有无线节点都具有可变传输范围,每个节点都可以随时了解到最近的活动邻居的距离以及所有节点都具有特殊的冲突检测(CD)能力的前提下,以同步模式工作。传输节点可以检测到其传输范围内的冲突,证明其算法在O(log n)个预期时隙内完成,并且假设节点位于欧几里德平面内,则使用的总能量为O(n log n)倍(不一定是快速的)聚合广播的最小能量。它们还提供了以下实例:在任何快速(即,具有O(log n)时隙)的能量收敛和最小能量收敛之间存在Omega(n / log n)间隙。我们证明,与最节能的快速收敛广播相比,Kesselman-Kowalski算法使用最佳能量的O(log 2 n)倍。在额外假设n为已知值或已知值的情况下,我们修改了Kesselman-Kowalski算法,使其也可以在O(log n)个预期时隙中结束,并使用O(n)乘以最小值的能量能量会聚。我们还提供了一种集中算法,该算法使用n / log n倍最小能量收敛广播来产生快速收敛广播。以上所有边界(包括来自Kesselman-Kowalski的边界)均假定从一个节点向另一个节点发送数据包所花费的能量与| u,u 2 |成正比。 (欧几里德距离的平方)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号