首页> 外文会议>Society of Vacuum Coaters Annual Technical Conference; 20050423-28; Denver,CO(US) >Influence of Low Ion Bombardment Energy on Interface Formation and Thin Film Growth in a Plasma-CVD Environment
【24h】

Influence of Low Ion Bombardment Energy on Interface Formation and Thin Film Growth in a Plasma-CVD Environment

机译:低离子轰击能量对等离子体CVD环境中界面形成和薄膜生长的影响

获取原文
获取原文并翻译 | 示例

摘要

We show that ion bombardment in the range of a few hundreds of eV used in ion- and plasma-assisted deposition processes leads to significant interface broadening due to ion mixing during the initial stages of film deposition. First, we study the modifications of a c-Si (100) target exposed to an O_2 plasma at the radio frequency powered electrode using in situ real time spectroscopic ellipsometry (RTSE). We detect important ion-bulk interactions, such as implantation, damage recoils, and oxidation to a depth of up to ~10 nm, which we confirm and validate with Monte-Carlo TRIDYN simulations based on binary collision calculations assuming plasma as a broad energy ion source. RTSE was then used to monitor TiO_2 deposition on SiO_2 under similar ion bombardment conditions, we observed formation of a 3 to 4 nm thick interfacial layer, while TRIDYN simulations show that ion bombardment results mainly in ion mixing of Ti and Si atoms. Simulated interface thickness scales as a square root of ion fluence, in agreement with ion mixing laws for light elements with Z < 20. At high ion-to-neutral ratios, simulations predict that the majority of Ti atoms are knocked into the bulk, suggesting that a substantial part of film deposition occurs below the growth surface.
机译:我们表明,在离子沉积和等离子体辅助沉积过程中使用的离子轰击范围在数百eV范围内,这是由于在薄膜沉积的初始阶段发生了离子混合而导致界面显着扩展的缘故。首先,我们使用原位实时光谱椭偏仪(RTSE)研究了在射频供电的电极下暴露于O_2等离子体的c-Si(100)靶的修饰。我们检测到了重要的离子-本体相互作用,例如注入,损伤后坐和氧化,直至深度达到约10 nm,我们使用基于二进制碰撞计算的Monte-Carlo TRIDYN模拟(假设等离子体为宽能量离子)进行了确认和验证。资源。然后,在类似的离子轰击条件下,使用RTSE监测SiO_2上TiO_2的沉积,我们观察到形成了3至4 nm厚的界面层,而TRIDYN模拟表明,离子轰击的结果主要是Ti和Si原子的离子混合。模拟的界面厚度缩放为离子通量的平方根,与Z <20的轻元素的离子混合定律一致。在高离子与中性比下,模拟预测大部分Ti原子会被撞成块状,这表明膜沉积的大部分发生在生长表面下方。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号