【24h】

An Overview of Plasticity in Nanoscale Composites

机译:纳米复合材料的可塑性概述

获取原文
获取原文并翻译 | 示例

摘要

In the past two decades there has been great activity in the area of nanoscale composites. This has included enormous effort in the areas of epitaxial structures for microelectronics applications, organometallic systems, coatings, layered metallic structures and drawn in-situ composites. A great deal of progress has been made in the development of controlled fabrication methods including sputtering, electrodeposition and crystallization of amorphous structures. Also, attention has been given to the integration of ultrafine scale structures into the design of many engineering applications from high field magnets operating at cryogenic temperatures to future gas turbines. These developments emphasize the need to explore, at a fundamental level, the progress associated with plasticity of ultrafine scale structures. The processes of plasticity can be explored at the macroscopic, mesoscopic, and microscopic levels in order to delineate those aspects of the mechanical response which are characteristic of ultrafine scale materials. Clearly, it is important to emphasize that there can be competition between plasticity and damage and fracture events and between competitive processes of plasticity and that these are dependent on the characteristic length scale of the structures. A classical system which reflects the competition of plasticity and fracture is the system Fe-Fe_3C. This was explored in the seminal work of Langford illustrated in figure 1. This indicates that Fe_3C in the form of particles 1-10 μm in thickness is brittle but when the scale is reduced to 50 nm the Fe_3C is ductile and can undergo extensive plastic flow.
机译:在过去的二十年中,纳米级复合材料领域一直活跃。这包括在微电子应用的外延结构,有机金属系统,涂层,层状金属结构和拉制原位复合材料方面的巨大努力。在包括溅射,电沉积和非晶结构结晶的受控制造方法的开发方面已经取得了很大进展。同样,从超低温结构的高磁场磁体到未来的燃气轮机,也将超细尺度结构集成到许多工程应用的设计中。这些发展强调需要从根本上探索与超细尺度结构的可塑性相关的进展。可以在宏观,介观和微观层面上探索可塑性过程,以描绘出机械响应的那些方面,这些方面是超细尺度材料的特征。显然,重要的是要强调,可塑性与破坏和断裂事件之间以及可塑性的竞争过程之间可能存在竞争,而这些竞争取决于结构的特征长度尺度。反映可塑性和断裂竞争的经典体系是Fe-Fe_3C体系。在图1所示的Langford的开创性工作中对此进行了探索。这表明厚度为1-10μm的颗粒形式的Fe_3C易碎,但是当氧化皮缩小至50 nm时,Fe_3C则是易延展的并且可以经历大量塑性流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号