首页> 外文会议>TAPPI International Conference on Nanotechnology 2006 >CELLULOSIC BIONANOMATERIALS: PERSPECTIVES FOR DEVELOPMENT
【24h】

CELLULOSIC BIONANOMATERIALS: PERSPECTIVES FOR DEVELOPMENT

机译:纤维素生物纳米材料:发展前景

获取原文
获取原文并翻译 | 示例

摘要

Nanoscience, where physics, chemistry, biology and materials science converge, deals with the manipulation and characterization of matter at molecular to micron scale. Nanotechnology is the emerging engineering discipline that applies nanoscience to create products. Because of their size, nanomaterials have the ability to impart novel and/or significantly improved physical (strength, stiffness, abrasion, thermal), chemical (catalytic, ion-exchange, membranes), biological (anti-microbial, compatibility) and electronic (optical, electrical, magnetic) properties. While the chemistry and physics of simple atoms and molecules is fairly well understood, predictable and no longer considered overly complex, serious attempts to bridge across the length scales from nano to macro remain a major challenge, and will occupy researchers and scientists for years ahead.rnThis review report highlights the potential significant benefits emanating from fibre engineering and selective design of lignocellulosics using evolutionary developmental processes with the objective of producing high value-added products of superior end-use performance for existing and new markets. The development and application of nanotechnologies to increase the potential utilization of renewable biomaterials so as to reduce supply chain costs (better with less material) and add functionality will improve the competitiveness of forestry materials and consolidate their utilization in "smart" packaging, E-paper, advanced engineering and structural composite materials, and cosmetics.
机译:物理学,化学,生物学和材料科学融合的纳米科学以分子到微米尺度处理物质的操纵和表征。纳米技术是应用纳米科学创造产品的新兴工程学科。由于其尺寸,纳米材料具有赋予新的和/或显着改善的物理(强度,刚度,磨损,热),化学(催化,离子交换,膜),生物学(抗微生物,相容性)和电子(光学,电,磁特性)。尽管对简单原子和分子的化学和物理学已相当了解,可预测且不再被认为过于复杂,但认真尝试跨接从纳米尺度到宏观尺度的长度尺度仍然是一项重大挑战,并将在未来几年占据研究人员和科学家的位置。 rn本评论报告重点介绍了采用进化发展过程的纤维工程学和木质纤维素的选择性设计所带来的潜在重大利益,目的是为现有和新市场生产出具有出色最终用途性能的高附加值产品。纳米技术的开发和应用可以提高可再生生物材料的潜在利用率,从而降低供应链成本(使用更少的材料更好)并增加功能,这将提高林业材料的竞争力并巩固其在“智能”包装中的利用率。 ,先进的工程和结构复合材料以及化妆品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号