首页> 外文会议>Terahertz emitters, receivers, and applications VI >Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics
【24h】

Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics

机译:二维空穴气体和不合适的铁电材料中以太赫兹频率的量子自旋动力学

获取原文
获取原文并翻译 | 示例

摘要

Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of mag-netoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multiferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.
机译:太赫兹时域光谱技术可以精确检查新型材料的激发。诸如氧化铜(CuO)之类的不正确的铁电材料会表现出复杂的磁性基态。 CuO在213K以下具有反铁磁性,但在213K和230K之间具有不相称的摆线磁性相。值得注意的是,摆线磁性相驱动铁电,使材料变成极性。这样的不正确的多铁性材料在当代引起了极大的兴趣,因为对磁电材料科学的更好理解可能会导致它们在致动器,传感器和固态存储器中的应用。不正确的多铁磁也具有新颖的准粒子激发:自旋波变为电偶极子有源时会形成电磁子。通过检查自旋与THz辐射相互作用时的动态响应,我们可以洞悉多重铁磁的基本物理学。与不适当的铁电体(磁性驱动结构反转不对称性(SIA))相反,由于应变和/或电场产生的SIA,二维电子系统会表现出非简并的自旋态。我们确定并探讨了Rashba自旋轨道相互作用对锗量子阱中高迁移率二维空穴气体中太赫兹频率下回旋共振的影响。增强的Rashba自旋轨道相互作用可以与量子阱的应变相关联,而时频分解方法允许在皮秒级的时间尺度上跟踪自旋分裂回旋加速器共振的动态形成和衰减。长的自旋退相干时间以及高的空穴迁移率突出了自旋电子学中Ge量子阱的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号