【24h】

LABORATORY MODELING OF HYDRAULIC DREDGING OPERATIONS

机译:液压挖泥作业的实验室建模

获取原文
获取原文并翻译 | 示例

摘要

The deepening and maintenance of the world's ports and navigable waterways has been an integral part of the world economy for centuries. In recent years, cutterhead and draghead hydraulic suction dredges have performed a majority of the dredging work. The ongoing design and testing of hydraulic dredges under different operating conditions is necessary to maintain efficient dredging operations within the limits set by increasing environmental regulations. The high cost of building and operating a hydraulic dredge makes field testing of full-scale prototypes very expensive and time consuming. Moreover, the testing conditions are generally difficult to control and the natural unpredictability of the sea can render experimental results inconclusive. All of these factors substantiate the need for laboratory model testing of hydraulic suction dredging operations under controlled conditions. The usefulness of any hydraulic model depends on the degree of geometric, kinematic, and dynamic similarity between the model and its prototype. The primary challenge in establishing useful similitude criteria for model dredge studies is proper geometric scaling of the sediment mean grain diameter and proper kinematic scaling of the average settling velocity, dredge swing velocity, and cutter rotational speed. Other challenges include proper geometric and kinematic and geometric scaling of the velocity field around the suction inlet relative to the settling velocity of the model bed material, and determining how adjusting these parameters effects the ability of the model to quantitatively predict turbidity generation and solids output for the prototype. Despite the inherent challenges, hydraulic model studies of dredge equipment can be useful for obtaining qualitative results if the degree of similarity between model and prototype is clearly understood. Further hydraulic model studies must be performed to better understand and quantify the scale effects that currently limit the quantitative analysis of model data. The new Coastal Engineering Laboratory at Texas A&M University will be equipped with model dredge testing facilities ideal for performing such experiments. The 3.66 m (12 ft) wide, 48.77 m (160 ft) long, and 3.05 m (10 ft) deep towing tank will include a 4.57 m (15 ft) deep, 9.14 m (30 ft) long sediment pit as well as current, wind, and wave generators. The towing carriage will be outfitted with a fully adjustable dredge ladder, a 22.4 kW (30 Hp) cutter drive, and a 7.62 cm (3 in) dredge pump. A Programmable Logic Controller (PLC) will provide computer numerical control and real-time data collection and analysis during dredging operations.
机译:几个世纪以来,世界港口和通航水道的加深和维护一直是世界经济的组成部分。近年来,刀头和拖头液压吸泥机完成了大部分的挖泥工作。为了在不断增加的环境法规所设定的限制范围内保持有效的挖泥作业,必须在不同的操作条件下进行液压挖泥机的持续设计和测试。建造和操作液压挖泥机的高昂成本使全尺寸原型的现场测试非常昂贵且耗时。此外,测试条件通常难以控制,海洋的自然不可预测性可能导致实验结果没有定论。所有这些因素证实了在受控条件下进行液压吸泥船操作的实验室模型测试的必要性。任何液压模型的有用性取决于模型与其原型之间的几何,运动学和动态相似程度。为模型挖泥研究建立有用的相似性标准的主要挑战是沉积物平均粒径的适当几何定标和平均沉降速度,挖泥机摆动速度和切割机转速的适当运动学定标。其他挑战包括吸气口周围速度场相对于模型床材料沉降速度的正确几何,运动学和几何比例缩放,以及确定如何调整这些参数如何影响模型定量预测浊度生成和固体输出的能力。原型。尽管存在固有的挑战,但如果可以清楚地了解模型与原型之间的相似程度,则挖泥设备的水力模型研究仍可用于获得定性结果。必须进行进一步的水力模型研究,以更好地理解和量化目前限制模型数据定量分析的比例效应。德州农工大学新的海岸工程实验室将配备模型挖泥机测试设备,非常适合进行此类实验。宽3.66 m(12 ft),长48.77 m(160 ft)和3.05 m(10 ft)的拖曳水箱将包括一个4.57 m(15 ft)深,9.14 m(30 ft)长的沉淀池以及电流,风力和波浪发生器。牵引车将配备有完全可调的挖泥梯,22.4 kW(30 Hp)切割机驱动器和7.62厘米(3英寸)的挖泥泵。可编程逻辑控制器(PLC)将在挖泥作业期间提供计算机数字控制以及实时数据收集和分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号