首页> 中文学位 >Characterization of Polymer Modified Road Building Materials:laboratory and Field Evaluation
【6h】

Characterization of Polymer Modified Road Building Materials:laboratory and Field Evaluation

代理获取

目录

CHARACTERIZATION OF POLYMERMODIFIED ROAD BUILDINGMATERIALS: LABORATORY AND FIELDEVALUATION

摘 要

Abstract

Contents

List of Abbreviations and Acronyms

Glossary of Polymer and Sealant Terms

Chapter 1 Introduction

1.1 Overview

1.2 Objectives

1.3 Background

1.3.1 Asphalt-polymer morphology

1.3.2 Issues with PMABs

1.3.3 History, use and benefits of polymers modified paving materials

1.3.4 Joint sealant

Chapter 2 Materials, Methods and Procedures

2.1 Materials

2.1.1 Aggregates and filler

2.1.2 Asphalt cement

2.1.3 Modifiers

2.1.4 Chemical catalysts

2.2 Methods and procedures

2.2.1 Performance evaluation of TDIPP and plastomeric polymers-asphalt formulation

2.2.2 SBS-asphalt formulation

2.2.3 ST-asphalt formulation

2.2.4 Physical properties and compatibility of PE and PP-MABS

2.2.5 Physical properties and storage stability of SBSMABS

2.2.6 Physiochemical properties of STMABS

2.2.7 Temperature susceptibility of PMABS and STMABs

2.2.8 SMA mixture design

2.2.8.1 Voids in coarse aggregates The VCA of the coarse aggregate fraction is determined by compacting the aggregate by the dry-rodded technique according to AASHTO T19 [111], unit weight and voids in aggregate. The acronym VCADRC indicates the voids in coarse aggregate of the coarse aggregate fraction in the dry-rodded condition.

2.2.9 Performance tests of polymers and ST-modified SMA mixtures

Chapter 3 Polymers and ST-Modified Binders and SMA Mixtures: Results and Discussions

3.1 Basic properties of PE and PP-MABS

3.2 Temperature susceptibility of PE and PP-MABS

3.3 Durability of PE and PP-MABS

3.4 Compatibility of PE and PP-MABS

3.5 Performance characteristics of PE and PP-MSMA mixtures

3.5.1 Drain down

3.5.2 Marshall properties

3.5.3 Moisture susceptibility

3.5.4 Low temperature property

3.5.5 Resilient modulus

3.6 Basic properties and storage stability of SBSMABS

3.7 Physiochemical properties of STMABS

3.8 Temperature susceptibility of STMABS

3.9 Alkali, acid and fuel resistance of STMABS

3.10 Performance characteristics of SBS and ST-MSMA mixtures

3.10.1 Drain down

3.10.2 Marshall properties

3.10.3 Moisture susceptibility

3.10.4 Low temperature property

3.10.5 Rutting resistance

3.10.6 Resilient modulus

3.11 Comparison between the used polymers and ST

3.12 Statistical analysis

3.12.1 Statistical considerations

3.12.2 Linear regression analysis

3.12.3 Optimization of polymers and ST-modified SMA mixtures

Chapter 4 Mechanistic Analysis of Modifying SMA Mixtures in Flexible Pavements

The responses for estimating the improvement in service life of the pavement or reduction in thickness of SMA and base layer for the same service life due to modification the SMA mixtures are determined and discussed in this chapter. In addition, this chapter compares the strain and displacement fields of an isotropic and an anisotropic of polymers and ST-modifying the SMA layer in flexible pavement using FE simulation.

4.1 Overview

4.1.1 BISAR

4.1.2 ANSYS

4.2 Benefits of modification

4.3 FE analysis of model pavement

Chapter 5 Waterproofing Materials: Results and Discussions

5.1 Asphalt mastic

5.2 Laboratory evaluation of sealant

5.2.1 Cone penetration

5.2.2 Ball penetration

5.2.3 Softening point

5.2.4 Recovery

5.2.5 Chemical and fuel resistant

5.2.6 Uniaxial tension

5.2.7 Flow

5.2.8 Direct shear rehometer (DSR)

5.2.9 Direct tension test (DTT)

5.2.10 Evaluation criteria

5.3 Field installation sections and evaluation procedures of sealant

5.3.1 Sealant condition number

5.3.2 Water infiltration

5.3.3 Debris or stone retention

5.3.4 Example SCN calculation

Chapter 6 Conclusions and Recommendations

References

Published Papers in the Ph.D.Period

Statement of Copyright

Letter of Authorization

Acknowledgements

Resume

展开▼

摘要

在此文的研究中,作者提出了两种新的解决塑性和弹性聚合物改性沥青均匀性和储存稳定性的方法。第一种方法是一种针对塑性聚合物的简单温度降解装置(TDIPP),第二种方法是采用甲苯溶液、直链十二烷基苯磺酸钠和水作为催化剂的将弹性聚合物混合于沥青的技术。
  由两种基质沥青(AH-50和AH-70),三种聚合物改性剂,按照改性剂掺量为1%~8%制成多种聚合物改性沥青(PMABs)。使用上述制备的改性沥青与两种料源的石料制成沥青马蹄脂碎石混合料(SMA)。对上述结果进行分析,主要分析指标:聚合物的理化特性,聚合物改性沥青的形态,老化后的聚合物改性沥青的结构稳定性,沥青马蹄脂碎石混合料的石料嵌挤条件,空隙率,马歇尔稳定度,静态拉伸强度,劈裂强度比,静态抗压强度,弯曲强度,动稳定度和沥青马蹄脂碎石混合料的回弹模量。
  在本论文的研究中发现浆粉(ST)可作为一种新的可供道路工程采用的改性剂并对它的掺配方法进行了研究。此外,还进行了经济效益,聚合物结构各向同性、各项异性,基于力学经验法进行了 ST改性沥青 SMA混合料设计并进行了有限元模拟。
  由 ST、碳酸钙及由加入柠檬酸的AH-70沥青制备而成的三种不同类型的填缝料(A,B,C)分别采用美国材料试验学会(ASTM),美国州公路及沥青学会(AASHTO),美国战略研究计划(SHRP),曼尼托巴基础建设和运输部(MIT),太平洋聚合物集团(PPI)的相关标准进行评价。
  研究发现,(1)改进的加工塑性聚合物改性沥青方法 TDIPP及提出的加工弹性聚合物改性沥青的方法可以取代使用高速剪切机,稳定剂及硫而用于生产均匀且具有良好储存稳定性的聚合物改性沥青。聚合物改性沥青的加热温度和拌合时间分别降低了12%及96%,由此可见,此种方法显示出良好的经济性能。(2)高温时,聚合物改性沥青并未显示出离析现象,由此说明,使用此种方法制备的聚合物改性沥青具有良好的相容性。(3)与基质沥青及聚合物改性沥青相比,生产 ST改性沥青混凝土并不需要任何特殊的计量装置。(4)ST还可作为抗剥落剂使用,它可以不溶于燃料及多数常用的化学物质。(5)基于多层弹性体系的分析结果显示,使用聚合物和ST改性剂制成的沥青马蹄脂碎石混合料可以有效的减小沥青混凝土路面的厚度,从而具有良好的经济效应。(6)制备的填封料符合 ASTM、SHRP和MIT的要求。试验结果显示,填缝料 B可以在绝大多数气候条件下使用,而填缝料 C则适合用于气候较温和的地区。试验结果同时显示,与热橡胶沥青类填缝料相比,填缝料 B的加热温度降低了12%,使用温度降低了12.5%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号