首页> 中文学位 >正交样条与拟小波配置法在分数阶偏微分方程数值解中的应用
【6h】

正交样条与拟小波配置法在分数阶偏微分方程数值解中的应用

代理获取

目录

摘要

1 绪论

1.1 引言

1.2 论文的研究动机

1.3 分数阶微积分的定义与性质

1.4 本论文的研究内容和主要结构

2 二维分数阶子扩散方程的正交样条配置方法

2.1 正交样条配置方法基本概念及引理

2.2 问题的离散

2.3 稳定性分析

2.4 收敛性分析

2.5 数值例子

第三章 四阶时间分数阶偏微分方程的欧拉/拟小波配点法

§3.1 拟小波数值方法及理论

§3.2 四阶时间分数阶偏微分方程与数值实现

§3.3 计算结果和讨论

第四章 四阶时间分数阶偏微分方程的Crank-Nicolson方法/拟小波配点法

§4.1 数学公式与离散式子

§4.2 一维数值试验分析

§4.3 二维数值试验分析与高频振动问题

5 总结和研究展望

参考文献

攻读博士学位期间发表或接受发表的学术论文

致谢

声明

展开▼

摘要

因为缺少相关的实际应用背景,分数阶微积分在其初期发展十分缓慢.然而在近几十年里,许多学者指出分数阶微积分非常适合于刻画具有记忆和遗传性质的材料和过程.而且分数阶微分方程可以用来模拟物理,生物,化学,工程热力学,流体力学,传热学,材料力学,环境科学,金融等科学领域中的许多现象.然而分数阶微分方程的数值方法与理论分析是一项困难的事,其理论分析与经典的数值方法之间有很大的差异.这些激励我们发展有效的数值方法解分数阶的微分方程及理论分析.
  本文主要研究正交样条配置法与拟小波配点法在分数阶偏微分方程数值解中的应用,共由五个彼此相关而又相互独立的章节构成.第一章简要地介绍分数阶微积分的几种定义并分析本文相关的一些性质.其次简要的回顾了正交样条和拟小波的知识,第二、三、四章着重介绍博士期间作者的研究工作,也是本论文的主要内容.第五章为对本文的总结.
  物理中,子扩散或许是一种最常研究的复杂问题,而且这些问题大都具非常重要的实际应用背景,如在分形和多孔介质中的弥散、半导体物理、湍流及凝聚态物理等.第二章,对于实际中出现的二维分数阶子扩散问题,首次引进正交样条配置方法进行数值求解.时间方向用差分格式离散,空间方向用正交样条配置法离散.首次严格证明了该方法的时间半离散格式的稳定性和误差估计以及相应的全离散格式的稳定性和误差估计.最后,对于分数阶计算的难点,即计算量和存储量大,我们不单单给出了一维数值例子,而且给出了二维的数值例子.数值例子表明,数值结果和理论预测的结果是一致的,用L∞,L2范数我们也展示了最优阶精度.本章内容已经公开发表在JournalofComputationalPhysics.
  第三章,对于四阶分数阶偏微分方程,我们首次提出一种新的且计算有效的数值方法-拟小波方法-来模拟该方程.拟小波思想的主要来源:根据Mallat的多尺度分析知道,任一的小波子空间都可以由一组正交规范化小波基生成,且正交规范化小波基又有自身对应的正交规范化尺度函数.但一般的正交规范化尺度函数的傅里叶变换是不连续的.所以,正交规范化尺度函数没有很好的局域性.这对数值计算是不利的.为了改善正交规范化尺度函数的局域性和渐进性.我们对它进行正则化处理,这就是拟小波思想的主要来源.本章时间导数用欧拉方法离散,空间导数采用拟小波数值格式离散.我们给出了该方程的三种不同的边界条件的离散与处理方法,这三种边界包括紧型边界、简单支撑型边界和横截支撑型边界.数值例子验证了给定的数值方法是可行和有效的.本章部分内容已经公开发表在InternationalJournalofComputerMathematics.
  第四章在第三章的基础上,我们对时间方向的离散进行改进,即时间导数用Crank-Nicolson方法去离散微分项,梯形积分公式去处理积分项,而空间导数采用拟小波数值格式离散.与第三章的数值结果相比,我们发现本章的方法用来解四阶分数阶的偏微分方程更加稳定且有效的.此外,此法对于高频振荡问题,显得尤为高效,优越.为了验证拟小波方法比一些标准的离散方法更强大,本章还给出了一个含有积分微分项的高频振荡问题的数值例子.而且此方法的程序容易实现,令人注目.本章内容已经公开发表在JournalofComputationalPhysics.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号