首页> 中文学位 >Enrichment and Analysis of Food Pigments by Ionic Liquids Coated Magnetic Nanoparticles in Magnetic Solid Phase Extraction Coupled with Spectrophotometry
【6h】

Enrichment and Analysis of Food Pigments by Ionic Liquids Coated Magnetic Nanoparticles in Magnetic Solid Phase Extraction Coupled with Spectrophotometry

代理获取

目录

Table of Contents

Abstract

摘要

Chapter One Literature Review

1.2.Food pigments

1.3.Magnetic solid phase extraction(MSPE)technology

1.3.1.Iron oxide(Fe3O4)

1.3.2.Functional materials loaded Fe3O4

1.4.Magnetic solid phase extraction(MSPE)joint technology in different samples analysis

1.5.Methods for Food pigments detection

1.5.1.In chromatography

1.5.2.In electrochemistry

1.5.3.Spectrophotometric Methods

1.6.Magnetic solid phase extraction(MSPE)in food pigment analysis

1.7.This article ideas

References

Chapter Two Determination of Rhodamine B Pigment in Food Samples by Ionic Liquid Coated Magnetic Core/Shell Fe3O4@SiO2 Nanoparticles Coupled with Fluorescence Spectrophotometry

2.1.Introduction

2.2.Experimental

2.2.1.Equipment and Reagents

2.2.3.MSPE Procedure

2.2.4.Determination Method

2.2.5.Sample Preparation

2.3.Results and discussion

2.3.1.Characterization of the MNPs by FT-IR

2.3.2.Characterization of the MNPs by Thermo-gravimetric analysis(TGA)

2.3.2.Extraction efficiency of different MNPs

2.3.4.Optimization of Adsorption

2.3.5.Adsorption Capacity

2.3.6.Optimization of Elution

2.3.7.The reusability of Fe3O4@SiO2@IL

2.3.8.Evaluation of Interferents

2.3.9.Analytical Performance of the Method

2.3.11.Sample Analysis

2.3.12.Comparison of the Proposed Method with Relevant Literatures

2.4.Conclusion

References

Chapter Three Separation/Analysis of Congo Red Using Poly Ionic Liquid Immobilized Magnetic Nanoparticles Coupled with Fluorescence Spectrophotometry

3.1.Introduction

3.2.Experimental section

3.2.1.Reagents and chemicals

3.2.2.Equipment

3.2.3.Preparation of poly(ionic liquid)immobilized magnetic nanoparticles(Fe3O4@SO2@PILs)

3.2.4.procedure of extraction

3.2.5.Sample preparation

3.2.6.Elution procedure

3.3.Results and discussion

3.3.1.Characterization of Fe3O4@SiO2@PIL

3.3.2.Optimization of Adsorption

3.3.3.Optimization of Elution

3.3.4.The reusability of Fe3O4@SiO2@PIL

3.3.5.Interferents effect

3.3.6.Analytical Application

3.3.7.Analysis of sample

3.3.8.Discussion on Adsorption Mechanism of Fe3O4@SiO2@PIL

3.3.9.Comparison with other methods

3.4.Conclusion

References

Chapter Four Poly Ionic Liquid Immobilized Magnetic Nanoparticles as Sorbent Coupled with Fluorescence Spectrophotometry for Separation/Analysis of Allura Red

4.1.Introduction

4.2.Experimental section

4.2.4.Elution procedure

4.3.Results and discussion

4.3.1.Optimization of Adsorption

4.3.2.Optimization of Elution

4.3.3.The reusability of Fe3O4@SiO2@PIL

4.3.4.Interference effects

4.3.5.Analytical performance

4.3.6.Analysis of sample

4.3.7.Comparison with other methods

4.3.8.Discussion of Mechanism

4.4.Conclusion

References

Chapter Five Determination of Rhodamine B in Food Samples by Fe3O4@Ionic Liquids-β-Cyclodextrin Cross Linked Polymer Solid Phase Extaction Coupled With Fluorescence Spectrophotometry

5.1.Introduction

5.2.Experimental

5.2.1.Apparatus and Chemicals

5.2.3.Synthesis of Fe3O4@ILs-β-CDCP

5.2.4.Adsorption/Elution

5.2.5.Sample preparation

5.3.Results and Discussion

5.3.1.Characterization of Fe3O4@ILs-β-CDCP

5.3.2.Optimization of Adsorption

5.3.3.Optimization of Elution

5.3.4.Reuse of Fe3O4@ILs-β-CDCP

5.3.5.Effect of Interferents

5.3.6.Analytical performance

5.3.7.Sample Analysis

5.3.8.Adsorption Mechanism of Fe3O4@ILs-β-CDCP for Rhodamine B

5.3.9.Comparison with other methods

5.4.Conclusion

References

Chapter Six Amino Acid Ionic Liquid Coated Magnetic Core Fe3O4@SiO2Nanoparticles Coupled with UV Spectrophotometry for Separation/Analysis of Congo Red

6.1.Introduction

6.2.Experimental

6.2.1.Equipment and reagents

6.2.4.Sample preparation

6.3.1.Characterization of Fe3O4@SiO2@AAIL

6.3.2.Optimization of Adsorption

6.3.3.Optimization of Elution

6.3.4.The repeated times of Fe3O4@SiO2@AAIL

6.3.5.Interference experiment

6.3.6.Analytical performance

6.4.Sample analysis

6.5.Conclusion

References

Chapter Seven Conclusion and Outlook

List of Publications

Acknowledgements

声明

展开▼

摘要

磁性固相萃取(MSPE)是一种采用磁性材料作为吸附剂的固相萃取技术。近年来,其作为一种新型的样品前处理方法备受关注。与普通的固相萃取技术相比,MSPE具有操作快速简单,有机溶剂消耗低,易于自动化等优点,在食品、环境及药物分析方面有着广阔应用前景。离子液体是一类具有独特的化学和物理性质的有机盐,具有稳定性好、萃取效率高、疏水性好等特点,被视为理想材料的萃取剂。
  1.离子液体磁性纳米复合材料分离/分析食品中罗丹明B
  合成三种萃取剂Fe3O4@SiO2@[BMIM]PF6,Fe3O4@SiO2@[HMIM]PF6和Fe3O4@SiO2@[OMIM]PF6并进行表征,以Fe3O4@SiO2@[OMIM]PF6作为磁性固相萃取剂,建立荧光分光光度法与磁性固相萃取(MSPE)联用方法分离/分析罗丹明B。结果表明,罗丹明B被Fe3O4@SiO2@IL快速吸附,乙醇洗脱,浓缩倍数为20倍,在最佳条件下,线性范围,检出限(DL),相关系数(R)和相对标准偏差(RSD)分别为0.40-140.0μg L-10.06μg L-1,0.9998和0.45%(n=3,c=4.00μg L-1)Fe3O4@SiO2纳米颗粒可重复使用10次。该方法已成功应用于食品样品中若丹明B的测定。
  2.聚离子液体磁性纳米复合材料分离/分析食品中刚果红
  本实验通过聚合1-乙烯-3-己基咪唑离子液体制备聚离子液体,将此聚离子液体修饰磁性纳米材料作为吸附剂,采用磁性固相萃取(MSPE)和荧光分光光度法对食品中刚果红进行分离分析。对pH值,吸附温度,时间,样品体积,和洗脱液类型等实验条件进行优化。该方法线性范围,检出限(DL),相关系数(R)和相对标准偏差(RSD)分别为0.10-9.00μg/mL,5.2μg mL-1,0.9987和3.10%(n=3,c=5.00μg mL-1),并成功应用于实际样品中刚果红的分离/分析。
  3.聚离子液体磁性纳米复合材料测定/分析食品中诱惑红
  本实验将聚溴化1-乙烯-3-己基咪唑离子液体制备聚离子液体磁性纳米复合材料作为吸附剂,结合荧光分光光度法测定食品样品中的诱惑红(AR),并优化pH值,吸附温度和时间,样品体积,洗脱液种类,体积和时间等参数。结果表明,AR线性范围0.01-0.50μgmL,相关系数(R)为0.9993,检出限为0.002μgmL。校正曲线的方程为A(吸光度)=0.04+0.13c(μgmL-1)。该方法成功应用于糖果和饮料样品中的诱惑红色素的分离分析,结果令人满意。
  4.离子液体-β-环糊精磁性纳米复合材料分离/分析食品中罗丹明B
  在Fe3O4@ILs表面引入β-环糊精,建立Fe3O4@ILs-β-CDCP固相萃取-荧光分光光度法测定罗丹明B(RhB)的新方法。研究了pH值,吸附时间,体积,淋洗液体积和时间等参数。该方法在0.01~9.00μg mL-1范围内线性关系良好,检出限为5.2ng mL-1,相关系数(R)>0.9987,相对标准偏差(RSD)为3.1%3,c=4.00μg mL。该方法成功应用于实际样品中RhB的测定,结果令人满意。
  5.氨基酸离子液体磁性纳米复合材料分离/分析食品中刚果红
  在Fe3O4@SiO2表面引入氨基酸离子液体,建立磁性固相萃取与紫外分光光度法相结合的分离分析方法。用FTIR,SEM和XRD对Fe3O4@SiO2@AAIL的性能和形貌进行了表征。并对萃取和洗脱过程中条件进行优化。在最佳条件下,该方法的线性范围为15-350ngmL-1,相关系数为0.9991,检出限为0.37μgmL-1(RSD=5.1%)。该方法已成功应用于实际样品中的刚果红分离。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号