首页> 外文学位 >Modeling Jupiter's atmospheric dynamics with an active hydrological cycle.
【24h】

Modeling Jupiter's atmospheric dynamics with an active hydrological cycle.

机译:利用活跃的水文循环模拟木星的大气动力学。

获取原文
获取原文并翻译 | 示例

摘要

An active hydrological cycle has been added to the EPIC general circulation model (GCM) for planetary applications, with a special emphasis on Jupiter. Scientists have suspected for decades that clouds, and in particular latent heating, strongly influence Jupiter's atmospheric dynamics and this research provides a tool to investigate this phenomenon. Components of the model have been adapted for the planetary setting from recently published Earth microphysics schemes.; The behavior of the cloud model is investigated in two steps. First, we explore in detail the runtime properties of a nominal model; and second, through sensitivity tests we determine how the full microphysics and selected components of the scheme affect the formation and evolution of clouds and precipitation. Results from our one-dimensional (vertical) simulations match expectations based on thermochemical models about the vertical positioning of ammonia and water clouds, and the nature of precipitation. Using meridional-plane (two-dimensional) simulations, we investigate the latitudinal variation of clouds. We conclude that the zonal-wind structure under the visible cloud deck strongly affects the position of the cloud bases. We describe in detail an equatorial storm system observed in our 2D simulations. We also show that simplification of our microphysics scheme would improperly simulate large scale weather phenomena on Jupiter.; We support future laboratory tests and in-situ measurements that would improve the cloud parameterization scheme and would also add more constraints on the global distribution of condensibles and on the zonal wind-structure. The complete computer program resulting from this research can be downloaded as open-source software from NASA's Planetary Data System (PDS) Atmospheres node.
机译:EPIC通用循环模型(GCM)已将主动水文循环添加到行星应用中,其中特别强调了木星。数十年来,科学家一直怀疑云,特别是潜热会强烈影响木星的大气动力学,这项研究提供了研究这一现象的工具。该模型的组成部分已根据最近发布的地球微物理学方案针对行星环境进行了修改。分两步研究了云模型的行为。首先,我们详细研究名义模型的运行时属性。其次,通过敏感性测试,我们确定了该方案的整个微观物理学和所选组件如何影响云层和降水的形成和演化。我们的一维(垂直)模拟结果与基于热化学模型的氨和水云的垂直位置以及降水性质的期望值相符。使用子午面(二维)模拟,我们研究了云的纬度变化。我们得出的结论是,可见云层下面的纬向风结构强烈影响着云层基础的位置。我们将详细描述在2D模拟中观察到的赤道风暴系统。我们还表明,简化我们的微物理方案将不适当地模拟木星上的大规模天气现象。我们支持将来的实验室测试和原位测量,这将改善云参数化方案,并且还将对可凝性的全球分布和区域风结构增加更多限制。这项研究产生的完整计算机程序可以从NASA的行星数据系统(PDS)Atmospheres节点作为开源软件下载。

著录项

  • 作者

    Palotai, Csaba.;

  • 作者单位

    University of Louisville.;

  • 授予单位 University of Louisville.;
  • 学科 Physics Astronomy and Astrophysics.; Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;
  • 关键词

  • 入库时间 2022-08-17 11:39:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号