首页> 外文学位 >An integrated study on the regulatory role of electron transfer chain and the cellular redox state on central metabolism in Synechocystis sp. PCC 6803.
【24h】

An integrated study on the regulatory role of electron transfer chain and the cellular redox state on central metabolism in Synechocystis sp. PCC 6803.

机译:集成研究的电子传递链和细胞氧化还原状态在中央藻中的中央代谢的调节作用。 PCC 6803。

获取原文
获取原文并翻译 | 示例

摘要

Systems biology requires comprehensive insight into the molecular physiology of an organism, but important components and regulatory mechanisms of the network of central metabolic pathways in cyanobacteria remain unclear. To determine components of a potential alternative tricarboxylic acid (TCA) cycle in the cyanobacterium Synechocystis sp. PCC 6803, the role of N-acetylornithine transaminase (S1r1022) in transamination of gamma-aminobutyrate was probed. The results are consistent with Slr1022 being part of an alternative route for converting 2-oxoglutarate to succinate via glutamate and gamma-aminobutyrate (a traditional 2-oxoglutarate dehydrogenase is missing in this organism). Another new enzyme component identified in the TCA cycle, S1r0201, was the C subunit of succinate:quinone reductase; this subunit was analyzed regarding its function in the succinate dehydrogenase complex and in the overall respiratory pathway. Metabolite analysis performed by gas chromatography-mass spectrometry on a series of genetically engineered strains with altered redox state, central metabolic pathways or carbon fixation efficiency showed that levels of intermediates in the TCA cycle remained relatively stable in Synechocystis sp. PCC 6803, indicating that even when specific electron transport pathways have been deleted, cells retain homeostasis in critical central metabolism, and it helps to maintain cellular redox poise. However, mutations and conditions that disturbed the redox state greatly affected carbon storage mechanisms of the cell. A high NADPH/NADP ratio led to increased biosynthesis of poly-3-hydroxybutyrate, a carbon storage compound that does not accumulate in Synechocystis sp. PCC 6803 under normal growth conditions but upon its formation leads to NADPH conversion to NADP. The results of the project highlight the physiological flexibility and biochemical diversity of cyanobacteria such as Synechocystis sp. PCC 6803, and emphasize the presence of homeostasis in central metabolites.
机译:系统生物学需要全面了解生物体的分子生理学,但是蓝藻中的中央代谢途径网络的重要组成部分和调控机制仍然不清楚。若要确定潜在的替代三羧酸(TCA)循环中的蓝藻Synechocystis sp。 PCC 6803,探讨了N-乙酰鸟氨酸转氨酶(S1r1022)在γ-氨基丁酸酯的氨基转移中的作用。结果与Slr1022一致,它是通过谷氨酸和γ-氨基丁酸酯将2-氧代戊二酸转化为琥珀酸的另一种途径的一部分(该生物体中缺少传统的2-氧代戊二酸脱氢酶)。在TCA循环中发现的另一种新的酶成分S1r0201是琥珀酸:醌还原酶的C亚基。分析了该亚基在琥珀酸脱氢酶复合物和整个呼吸途径中的功能。通过气相色谱-质谱法对一系列基因工程菌株进行的代谢物分析显示氧化还原状态,中央代谢途径或碳固定效率发生了变化,表明TCA循环中的中间体水平在Synechocystis sp中保持相对稳定。 PCC 6803,表明即使删除了特定的电子传输途径,细胞也能在关键的中枢新陈代谢中保持稳态,并有助于维持细胞的氧化还原平衡。但是,干扰氧化还原状态的突变和条件极大地影响了细胞的碳存储机制。高NADPH / NADP比值导致聚-3-羟基丁酸酯的生物合成增加,聚-3-羟基丁酸酯不会积聚在集胞藻中。 PCC 6803在正常生长条件下但形成时会导致NADPH转化为NADP。该项目的结果突出了蓝藻(如集胞藻)的生理灵活性和生化多样性。 PCC 6803,并强调在中心代谢产物中存在体内平衡。

著录项

  • 作者

    Cai, Zhi.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Biology Molecular.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号