首页> 外文学位 >Methodes de volumes finis pour la simulation sous-resolue de detonations.
【24h】

Methodes de volumes finis pour la simulation sous-resolue de detonations.

机译:用于爆炸的子分辨模拟的有限体积方法。

获取原文
获取原文并翻译 | 示例

摘要

The simultaneous presence of two scales: macroscopic for the gas flow and microscopic for the chemical reaction, makes numerical approximation of detonation waves very delicate. A resolved simulation, where the small chemical time scale is fully resolved, effectively captures the wave in details. However, it is far too expensive in computing time, especially for multi-dimensional problems. While being economic, an underresolved approach, where the discretisation is proportional to the macroscopic scale, is unfortunately inefficient for the capture of stiff detonation waves because it leads to unphysical solutions.;Moreover, this thesis presents a multi-scale method producing very large scale predictions on the behavior of a detonation, while giving access to information coining from the microscopic scale, such as effects of the wave instabilities on the physical variables near the front.;Key words: Detonation, hyperbolic systems, source term, relaxation, operator splitting, underresolved, finite volumes, central schemes, explicit, implicit, numerical viscosity, instability, artificial compression, modified cell averages, multi-scale.;We propose a family of accurate time-splitting methods, numerically stable, allowing underresolved calculations and requiring neither the resolution of the Riemann problem nor the knowledge of the characteristic structure of the flux jacobian matrix and of course, converging to the physical solution. With a refinement of the grid, these methods moreover effectively capture the unstable character of the detonation and provide the exact front structure of the wave. It is realistic to claim that such methods can moreover solve about any hyperbolic system with source term. We thus elaborate "black box"-type methods, while the majority of the schemes existing for the detonation problem me props of the solution.
机译:两种尺度同时存在:宏观的气体流动和微观的化学反应,使爆炸波的数值近似变得非常微妙。完全模拟了小的化学时间尺度的已解析模拟可以有效地捕获详细信息。但是,这在计算时间上太昂贵了,尤其是对于多维问题。尽管是经济的,但离散化与宏观尺度成比例的未解决方法不幸的是,由于它导致非物理解,因此捕获坚硬爆轰波效率低下;此外,本文提出了一种产生大规模的多尺度方法爆轰行为的预测,同时可以从微观尺度获得信息,例如波不稳定性对锋面附近物理变量的影响。关键词:爆轰,双曲系统,源项,张弛,算符分裂,欠解析,有限体积,中心方案,显式,隐式,数值粘度,不稳定性,人为压缩,修正的单元平均值,多尺度。;我们提出了一系列精确的时间分割方法,数值稳定,允许欠解析的计算,并且不需要黎曼问题的解决或通量雅可比亚特征结构的知识n矩阵,当然也收敛到物理解。通过改进网格,这些方法还有效地捕获了爆炸的不稳定特征,并提供了精确的波前结构。可以断言这些方法还可以解决任何带有源项的双曲系统。因此,我们阐述了“黑匣子”式方法,而大多数用于爆炸的方案都是解决方案的基础。

著录项

  • 作者

    St-Hilaire, Marie-Odette.;

  • 作者单位

    Universite de Montreal (Canada).;

  • 授予单位 Universite de Montreal (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 肿瘤学;
  • 关键词

  • 入库时间 2022-08-17 11:40:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号