首页> 外文学位 >Convex Optimization Algorithms and Recovery Theories for Sparse Models in Machine Learning.
【24h】

Convex Optimization Algorithms and Recovery Theories for Sparse Models in Machine Learning.

机译:机器学习中稀疏模型的凸优化算法和恢复理论。

获取原文
获取原文并翻译 | 示例

摘要

Sparse modeling is a rapidly developing topic that arises frequently in areas such as machine learning, data analysis and signal processing. One important application of sparse modeling is the recovery of a high-dimensional object from relatively low number of noisy observations, which is the main focuses of the Compressed Sensing [14,22],Matrix Completion(MC) [13,34,68] and Robust Principal Component Analysis (RPCA) [12]. However, the power of sparse models is hampered by the unprecedented size of the data that has become more and more available in practice. Therefore, it has become increasingly important to better harnessing the convex optimization techniques to take advantage of any underlying "sparsity" structure in problems of extremely large size.;This thesis focuses on two main aspects of sparse modeling. From the modeling perspective, it extends convex programming formulations for matrix completion and robust principal component analysis problems to the case of tensors, and derives theoretical guarantees for exact tensor recovery under a framework of strongly convex programming. On the optimization side, an efficient first-order algorithm with the optimal convergence rate has been proposed and studied for a wide range of problems of linearly constraint sparse modeling problems.;In Chapter 2, we generalize matrix completion and matrix RPCA models and rigorously study tractable models for provably recovering low-rank tensors. Unlike their matrix-based predecessors, current convex approaches for recovering low-rank tensors based on incomplete (tensor completion) or/and grossly corrupted (tensor robust principal analysis) observations still suffer from a lack of theoretical guarantees, although they have been used in various recent applications and have exhibited promising empirical performance. In Chapter 2, we attempt to fill this gap. Specifically, we propose a class of convex recovery models (including strongly convex programs) that can be proved to guarantee exact recoveries under certain conditions.;In all of the sparse models for low-rank tensor recovery problems discussed in Chapter 2, the most popular convex relaxations currently being used minimize the sum of the nuclear norms (SNN) of the unfolding matrices of the tensor. In Chapter 3, we show that this approach can be substantially suboptimal: reliably recovering a K-way tensor of length n and Tucker rank r from Gaussian measurements requires O( rnK-1) observations. In contrast, a certain (intractable) non-convex formulation needs only O(rK +nrK) observations. We introduce a simple, new convex relaxation, which partially bridges this gap. Our new formulation succeeds with O( rk2 n nk2 ) observations. The lower bound for the SNN model follows from our new result on recovering signals with multiple structures (e.g. sparse, low rank), which demonstrates the significant sub-optimality of the common approach of minimizing the sum of individual sparsity inducing norms (e.g. l1 norm, nuclear norm). Our new formulation for low-rank tensor recovery shows how the sample complexity can be reduced by designing convex regularizers that exploit several structures jointly.;In Chapter 4, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the sparse models discussed in Chapter 2 and 3. This accelerated algorithm is based on the fact that the linearized Bregman (LB) algorithm first proposed by Stanley Osher and his collaborators is equivalent to a gradient descent method applied to a certain dual formulation. We show that the LB method requires O(1/epsilon) iterations to obtain an epsilon-optimal solution and the ALB algorithm reduces this iteration complexity to O(1/ 3 ) while requiring almost the same computational effort on each iteration. Numerical results on compressed sensing and matrix completion problems are presented that demonstrate that the ALB method can be significantly faster than the LB method.;In Chapter 5, we extend the arguments of Chapter 4 and apply the linearized Bregman (LB) method to solving linear programming problems. Numerical experiments show that neither the LB method or the accelerated LB method works well on linear programming problems, especially on real data sets. Inspired by the observation that the linearized Bregman, when solving linear programming problems, can be viewed as a sequence of box-constrained quadratic minimizations that are restricted to different supports of the solution variable, we propose new algorithms that combine the Conjugate Gredient/BFGS update with the linearized Bregman method. Numerical experiments on both synthetic and real data sets were conducted, and the new CGLB algorithm not only significantly outperformed the accelerated linearized Bregman proposed in Chapter 4, but was also comparable with the MATLAB solver on small-medium scale real data sets.
机译:稀疏建模是一个快速发展的主题,在机器学习,数据分析和信号处理等领域经常出现。稀疏建模的一个重要应用是从相对较少的噪声观测中恢复高维对象,这是压缩感知的主要重点[14,22],矩阵完成(MC)[13,34,68]和稳健的主成分分析(RPCA)[12]。但是,稀疏模型的功能受到前所未有的数据规模的限制,而在实践中,数据的规模越来越大。因此,在超大型问题中,更好地利用凸优化技术来利用任何潜在的“稀疏”结构变得越来越重要。;本论文着眼于稀疏建模的两个主要方面。从建模的角度来看,它把凸矩阵规划的凸规划公式和鲁棒的主成分分析问题扩展到张量的情况,并在强凸规划的框架下为精确的张量恢复提供了理论保证。在优化方面,针对各种线性约束稀疏建模问题,提出了一种具有最优收敛速度的高效一阶算法,并进行了研究。在第二章中,我们归纳了矩阵完备性和矩阵RPCA模型并进行了严格的研究。易于恢复的低阶张量的可伸缩模型。与基于矩阵的前辈不同,当前的基于不完整(张量完成)或/和严重损坏(张量稳健的主分析)观测值恢复低秩张量的凸方法仍然缺乏理论上的保证,尽管它们已被用于最近的各种应用,并展现出令人鼓舞的经验性能。在第二章中,我们试图填补这一空白。具体来说,我们提出了一类凸恢复模型(包括强凸程序),可以证明在某些条件下可以保证精确的恢复。;在第2章讨论的所有低阶张量恢复问题的稀疏模型中,最受欢迎当前使用的凸弛豫将张量展开矩阵的核规范之和(SNN)最小化。在第3章中,我们证明了这种方法可能是次优的:从高斯测量中可靠地恢复长度为n和塔克等级r的K向张量需要O(rnK-1)观测。相反,某些(难处理的)非凸公式仅需要O(rK + nrK)观测值。我们引入了一个简单的新的凸松弛,可以部分弥补这一差距。我们的新公式以O(rk2 n nk2)观测成功。 SNN模型的下限来自我们对具有多种结构(例如,稀疏,低秩)的信号进行恢复的新结果,这表明了使单个稀疏性归纳规范(例如l1规范)的总和最小的通用方法的显着次优性。 ,核规范)。我们针对低秩张量恢复的新公式显示了如何通过设计共同利用多个结构的凸正则化器来降低样本复杂度。;在第4章中,我们提出并分析了加速线性化Bregman(ALB)方法来解决所讨论的稀疏模型在第2章和第3章中,该加速算法基于以下事实:Stanley Osher及其合作者首先提出的线性化Bregman(LB)算法等效于应用于特定对偶公式的梯度下降方法。我们证明了LB方法需要O(1 / epsilon)迭代来获得epsilon最优解,而ALB算法将这种迭代复杂度降低到O(1/3),而每次迭代都需要几乎相同的计算量。给出了关于压缩感测和矩阵完成问题的数值结果,证明了ALB方法可以比LB方法快得多。在第5章中,我们扩展了第4章的论点,并将线性化的Bregman(LB)方法应用于求解线性问题。编程问题。数值实验表明,LB方法或加速LB方法都不能很好地解决线性规划问题,特别是在实际数据集上。受以下观察启发:在解决线性规划问题时,线性化的Bregman可以看作是一系列受限于解变量支持的框约束二次最小化序列,我们提出了结合共轭Gredient / BFGS更新的新算法使用线性Bregman方法。在合成和真实数据集上进行了数值实验,新的CGLB算法不仅明显优于第4章中提出的加速线性化Bregman,而且在中小型真实数据集上也可与MATLAB解算器相提并论。

著录项

  • 作者

    Huang, Bo.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Mathematics.;Statistics.;Operations Research.;Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号