首页> 外文学位 >Transport properties of silicon complementary-metal-oxide semiconductor quantum well field-effect transistors.
【24h】

Transport properties of silicon complementary-metal-oxide semiconductor quantum well field-effect transistors.

机译:硅互补金属氧化物半导体量子阱场效应晶体管的传输特性。

获取原文
获取原文并翻译 | 示例

摘要

Introducing explicit quantum transport into silicon (Si) transistors in a manner compatible with industrial fabrication has proven challenging, yet has the potential to transform the performance horizons of large scale integrated Si devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors fabricated using industrial silicon complementary MOS processing. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (VG) spacing between NDTCs. The VG spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background.;A folding amplifier frequency multiplier circuit using a single QW NMOS transistor to generate a folded current-voltage transfer function via a NDTC was demonstrated. Time domain data shows frequency doubling in the kHz range at room temperature, and Fourier analysis confirms that the output is dominated by the second harmonic of the input. De-embedding the circuit response characteristics from parasitic cable and contact impedances suggests that in the absence of parasitics the doubling bandwidth could be as high as 10 GHz in a monolithic integrated circuit, limited by the transresistance magnitude of the QW NMOS. This is the first example of a QW device fabricated by mainstream Si CMOS technology being used in a circuit application and establishes the feasibility of scalable CMOS circuits that exploit explicit quantum transport. Ongoing quantum transport simulations based off of the spatial dopant distribution suggests a quasi-parabolic potential profile. Energy spacings between resonant transmission states are not consistent with experimental data, suggesting that either the assumed transport model is incomplete, or scattering mechanisms significantly mix the quasi-bound states and broaden the energy spacings.
机译:以与工业制造兼容的方式将显式量子传输引入硅(Si)晶体管已证明具有挑战性,但仍有可能改变大规模集成Si器件和电路的性能范围。由负微分跨导(NDTC)证明的显式量子传输已在使用工业硅互补MOS工艺制造的一组量子阱(QW)n沟道金属氧化物半导体(NMOS)晶体管中观察到。 QW电位是通过在商用45 nm技术节点工艺线上的横向离子注入掺杂形成的,传输特性的测量结果表明NDTC高达室温。已经测量了这些器件中NDTC的详细栅极长度和温度依赖性特性。 NDTC的栅极长度依赖性显示接口通道长度与形成的NDTC的数量以及NDTC之间的栅极电压(VG)间距之间存在相关性。多个NDTC之间的VG间距显示出准抛物线QW电位分布。温度依赖性与在简并的掺杂背景下载流子浓度的部分冻结相符。展示了使用单个QW NMOS晶体管通过NDTC产生折叠电流-电压传递函数的折叠放大器倍频电路。时域数据显示,室温下,频率在kHz范围内加倍,傅立叶分析证实,输出由输入的二次谐波决定。从寄生电缆和接触阻抗去嵌入电路响应特性表明,在没有寄生效应的情况下,单片集成电路中的倍频带宽可能高达10 GHz,这受QW NMOS跨阻幅度的限制。这是在电路应用中使用主流Si CMOS技术制造的QW器件的第一个示例,并建立了利用显式量子传输的可扩展CMOS电路的可行性。正在进行的基于空间掺杂剂分布的量子输运模拟显示出准抛物线形。共振传输状态之间的能量间隔与实验数据不一致,表明要么假设的传输模型不完整,要么散射机制显着地混合了准束缚状态并扩大了能量间隔。

著录项

  • 作者

    Naquin, Clint Alan.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号