首页> 外文学位 >Multidimensional modeling of combustion and knock in spark-ignition engines with detailed chemical kinetics.
【24h】

Multidimensional modeling of combustion and knock in spark-ignition engines with detailed chemical kinetics.

机译:具有详细化学动力学的火花点火发动机燃烧和爆震的多维模型。

获取原文
获取原文并翻译 | 示例

摘要

A G-equation-based multidimensional combustion model incorporating detailed chemical kinetics was developed and implemented in KIVA-3V for spark-ignition (SI) engine simulations. The integrated model simulates the turbulent flame propagation, pollutant formation, flame quenching and knocking combustion processes in SI engines, and was applied to both homogeneous charge and direct-injections (DI) SI engines.; The G-equation method is employed to track the position of the mean turbulent flame front surface. A progress variable concept is introduced into the turbulent flame speed correlation to account for the laminar to turbulent evolution of the spark kernel flame. The laminar flame speed correlation was also updated to take the mixture stratification effect into account. A new method based on tracking the subgrid-scale burnt/unburnt volumes of the flame-containing cells is proposed for the primary heat release calculation. In the post flame zone, detailed hydrocarbon fuel oxidation mechanisms coupled with a reduced NOx mechanism are applied for modeling secondary heat release and NOx formation. The chemical kinetic mechanisms are also applied in front of the flame front for engine knock modeling.; The detailed iso-octane mechanism used to simulate gasoline fuel combustion was validated using ignition delay test data in a shock tube and measured pressure data of a gasoline homogeneous charge compression ignition (HCCI) engine. The SI engines used for model validation include a Caterpillar propane engine, a two-stroke marine GDI engine and a Ford engine operating in both port-fuel-injection (PFI) mode and DI mode. Good agreement between simulated and measured in-cylinder pressure traces and engine-out emissions was obtained over a wide range of operating conditions.; Based on model validation, knocking combustion processes in the Ford engine under boost conditions was modeled. Knock mitigation strategies using cooled EGR and split-injection were assessed based on the numerical study.; As an independent topic, a semi-implicit numerical solver for detailed chemistry was developed aiming at improving computational efficiency. The present solver was successfully applied to diesel engine simulations and 40--70% CPU time savings were achieved compared to the standard CHEMKIN.
机译:开发了基于G方程的多维燃烧模型,该模型结合了详细的化学动力学,并在KIVA-3V中用于火花点火(SI)发动机模拟。集成模型模拟了SI发动机中湍流的火焰传播,污染物形成,火焰熄灭和爆震燃烧过程,并且被应用于均质加注和直接喷射(DI)SI发动机。 G方程法用于跟踪平均湍流火焰前表面的位置。将进度变量概念引入湍流火焰速度相关性,以解决火花核火焰的层流到湍流演变。还更新了层流火焰速度相关性,以考虑到混合物的分层效应。提出了一种基于跟踪含火焰电池亚网格规模燃烧/未燃烧体积的新方法,用于一次热量释放计算。在火焰后带中,将详细的碳氢化合物燃料氧化机理与还原型NOx机理相结合,用于模拟二次放热和NOx的形成。化学动力学机理也被应用在火焰前沿的前面,用于发动机爆震建模。使用减震管中的点火延迟测试数据以及汽油均质充量压缩点火(HCCI)发动机的测得压力数据,验证了用于模拟汽油燃料燃烧的详细异辛烷机制。用于模型验证的SI发动机包括Caterpillar丙烷发动机,两冲程船用GDI发动机和以港口燃料喷射(PFI)模式和DI模式运行的福特发动机。在广泛的工作条件下,模拟和测量的缸内压力曲线与发动机排出的排放量之间取得了良好的一致性。基于模型验证,对增压条件下福特发动机的爆震燃烧过程进行了建模。基于数值研究评估了使用冷却的EGR和分流喷射的爆震缓解策略。作为一个独立的主题,开发了一种用于详细化学的半隐式数值求解器,旨在提高计算效率。本求解器已成功应用于柴油机仿真,与标准的CHEMKIN相比,可节省40--70%的CPU时间。

著录项

  • 作者

    Liang, Long.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号