首页> 外文学位 >Exploration of Hot Switching Damage and Damage Mechanisms in MEMS Switch Contacts.
【24h】

Exploration of Hot Switching Damage and Damage Mechanisms in MEMS Switch Contacts.

机译:探索MEMS开关触点中的热开关损坏和损坏机理。

获取原文
获取原文并翻译 | 示例

摘要

Ohmic contact, or contact-type, Microelectromechanical Systems (MEMS) switches employ two separable metal electrodes as a contact. In the switch environment, the switch contact may experience either of two switching modes. Cold switching refers to the application of an electrical signal across the switch only when the contact is fully closed. On the other hand, hot switching refers to the application of a signal while the switch is being opened and closed. Compared to cold switching, hot switching leads to shorter contact lifetimes.;This work explores the effect of multi-domain coupling on the behavior of an electrical contact, what makes hot switching damaging, the making of contact under bias as it compares to the breaking of contact under bias (leading versus trailing edge hot switching), and the specific mechanisms that could be responsible for hot switching damage.;Theoretically, it was found that for a contact operating under displacement control, such as an asperity on the surface of a contact bump, thermal-electrical-mechanical coupling has a significant effect. Generalized (non-dimensional) equations are presented to describe the behavior of the contact in this situation.;Experimentally, a specially built micro-contact testing system and microfabricated contact pairs were used to conduct hot switching tests to characterize hot switching damage. It was found that hot switching damage mechanisms are active on both the leading (closing) and trailing (opening) edges, resulting in directional material transfer damage of roughly the same volume at 4400 microm/s approach/separation rate. Furthermore, the direction of the material transfer damage is shown to be polarity-dependent, from the anode to the cathode. Polarity dependent damage mechanisms were found to be active at separations of less than 10 nm and in time periods on the order of hundreds of nanoseconds. Additionally, thermo-mechanical contact damage mechanism comprised of joule heating and thermal geometry was identified that transfers material away from the contact bump with strong separation rate dependence.;This work makes significant progress toward defining the specific mechanisms responsible for the additional damage associated with hot switching, thereby helping to solve a problem that has plagued the microswitch and inhibited it from significant commercial market penetration.
机译:欧姆接触或接触式微机电系统(MEMS)开关采用两个可分离的金属电极作为接触点。在开关环境中,开关触点可能会遇到两种开关模式之一。冷切换是指仅在触点完全闭合时才在开关上施加电信号。另一方面,热切换是指在打开和关闭开关时施加信号。与冷开关相比,热开关可缩短触点寿命。这项工作探讨了多域耦合对电触点性能的影响,是什么导致热开关损坏,在偏置情况下形成触点而与断开相比理论上,我们发现对于在位移控制下工作的触点(例如,表面的凹凸不平)而言,触点在偏置(前缘热切换与后缘热切换)以及可能造成热切换损坏的特定机制方面具有重要意义。对于接触凸点,热电机械耦合具有显着效果。提出了广义(无量纲)方程式来描述这种情况下的接触行为。;实验上,使用了专门构建的微接触测试系统和微制造的接触对来进行热开关测试,以表征热开关损坏。已经发现,热开关损坏机制在前(闭合)和后(打开)边缘上均有效,从而在4400 microm / s接近/分离速率下导致定向材料转移损坏大致相同的体积。此外,从阳极到阴极,材料转移损坏的方向显示为极性相关。发现与极性相关的破坏机制在小于10 nm的间隔和数百纳秒量级的时间段内有效。此外,还确定了由焦耳加热和热几何形状组成的热机械接触损伤机制,该机制将材料从接触凸点处转移出去,并具有很强的分离率依赖性;这项工作在确定引起与热相关的附加损伤的具体机制方面取得了重大进展开关,从而有助于解决困扰微型开关并抑制其进入重要商业市场的问题。

著录项

  • 作者

    Hennessy, Ryan Patrick.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Mechanical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号