首页> 外文学位 >Integrating green manufacturing in sustainable life cycle design: A case study on PEM fuel cells.
【24h】

Integrating green manufacturing in sustainable life cycle design: A case study on PEM fuel cells.

机译:将绿色制造融入可持续生命周期设计中:PEM燃料电池的案例研究。

获取原文
获取原文并翻译 | 示例

摘要

Global resource consumption and anthropogenic carbon emissions are increasing at an unsustainable rate, causing noticeably adverse changes to our ecosystem and jeopardizing the ability for future generations to thrive. This realization has brought together designers and engineers to holistically incorporate all aspects of sustainability in the product's entire life cycle using principles such as green engineering and design for environment (DFE) and eco- design tools such as life cycle assessment (LCA). However, to properly assess and facilitate designs and technologies that are indeed more environmentally benign, changes are needed to shift from the conventional serial LCA to a more coupled and integrated sustainable life cycle design (iSLCD) approach that resonates the three pillars of sustainability. A unique concept of the Product Life Cycle Zodiac (PLCZ) is introduced that reveals the complete holistic product life cycle from Earth to landfill and enables the information flow of the different life cycle phases to be fed back or looped for product development and process planning. In addition, the precision of the iSLCD approach can be vastly improved by the leveraging of green manufacturing, such as the scales of green manufacturing (SGM), where changes at the manufacturing process level can propagate throughout all downstream stages. A case study reflecting the influence of design and manufacturing using the iSLCD frame- work is considered. A potential proxy for large carbon emission reductions is the electrifi- cation of the automotive industry, which has promised to provide a renewable and cleaner alternative to the conventional internal combustion engine (ICE). Alternative energy vehi- cles such as the Polymer Electrolyte Membrane (PEM) fuel cell vehicle utilizes compressed hydrogen to offer zero emissions during the operational use phase. However, despite being commercially available for over a decade, current annual production volumes are more than several orders of magnitude lower than todays conventional ICEs. At current low production volumes the processes for PEM fuel cell manufacturing are burdened with large inefficiencies such as low throughput batch processing (as compared to continuous roll-to-roll processing), high equipment idle times, low material utilization and processing yields. These inefficiencies contribute to an increase of the specific energy consumption (SEC) and hence the environmental impact of the fuel cells to a point where the benefits of zero emissions may potentially be outweighed by the emissions during the manufacture of the fuel cell. Furthermore, the low production volumes and the use of exotic materials such as platinum catalysts impedes the adoption of the technology due to prohibitively high cost. Therefore, it is of interest to analyze in, parallel with the environmental impacts, the cost implications and where identify area of potential cost reductions. The case study investigates the environmental and economical performance of PEM fuel cell manufacturing for automotive applications. The research is in part a collaborative effort with Daimler-Benz in attempts to assess and improve the current state-of-the-art manufac- turing practices by leveraging the SGM. Detailed unit processes are modeled in terms of energy consumption as a function of manufacturing inputs and are integrated into a facility scale HVAC energy consumption model. The life cycle phases included in the model follow the product life cycle zodiac (PLCZ) from raw material extraction to product distribution and the various end-of-life pathways. The economical aspect is investigated using a design for manufacturing and assembly (DFMA) technique in conjunction with the environmental anal- ysis. A thorough analysis of the results and the breakdown of the component contributions and sensitivity analysis of the model is conducted. The sensitivity analysis provides insights to not only the the fuel cell manufacturing, but also highlights the importance of integrating the SGM. Lastly, the influence of data uncertainty is incorporated using a stochastic Monte Carlo technique.
机译:全球资源消耗和人为碳排放以不可持续的速度增长,对我们的生态系统造成了明显的不利变化,并损害了子孙后代的生存能力。这种认识使设计人员和工程师聚集在一起,使用绿色工程和环境设计(DFE)等原则以及生态设计工具(例如生命周期评估(LCA))将可持续发展的各个方面全面纳入产品的整个生命周期。但是,为了正确评估和促进确实对环境更有利的设计和技术,需要做出改变,以从传统的串行LCA转向更具耦合性和集成性的可持续生命周期设计(iSLCD)方法,以实现可持续性三大支柱的共鸣。引入了产品生命周期十二生肖(PLCZ)的独特概念,它揭示了从地球到垃圾填埋场的完整的整体产品生命周期,并使不同生命周期阶段的信息流可以反馈或循环用于产品开发和过程规划。此外,通过利用绿色制造(例如绿色制造规模(SGM)),可以极大地提高iSLCD方法的精度,其中绿色制造规模的变化可以传播到所有下游阶段。考虑了一个案例研究,反映了使用iSLCD框架进行设计和制造的影响。汽车工业的电气化可能是大幅度减少碳排放的替代方法,它已承诺提供常规内燃机(ICE)的可再生,更清洁的替代品。诸如聚合物电解质膜(PEM)燃料电池汽车之类的替代能源汽车在运行使用阶段利用压缩氢气提供零排放。但是,尽管已经有十多年的商业销售历史了,但目前的年产量却比当今的传统ICE低了几个数量级。在当前的低产量下,PEM燃料电池制造过程的效率低下,例如批量生产的吞吐量低(与连续卷对卷处理相比),设备闲置时间长,材料利用率低和加工产量低。这些效率低下会导致单位能量消耗(SEC)的增加,从而导致燃料电池对环境的影响达到零排放的好处,在燃料电池的制造过程中排放可能会超过零排放。此外,由于过高的成本,低产量和使用异质材料(例如铂催化剂)阻碍了该技术的采用。因此,与环境影响,成本影响以及在何处确定潜在的成本降低区域同时进行分析是很有意义的。该案例研究调查了用于汽车应用的PEM燃料电池制造的环境和经济性能。该研究部分是与戴姆勒-奔驰(Daimler-Benz)的合作,旨在通过利用SGM评估和改进当前的最新制造实践。根据能耗作为制造投入的函数对详细的单元过程进行建模,并将其集成到设施规模的HVAC能耗模型中。模型中包含的生命周期阶段遵循从原材料提取到产品分配以及各种报废途径的产品生命周期十二生肖(PLCZ)。使用制造和装配设计(DFMA)技术结合环境分析对经济方面进行了研究。对结果进行了全面分析,并对组件贡献进行了细分,并对模型进行了敏感性分析。敏感性分析不仅为燃料电池制造提供了见识,而且还突出了集成SGM的重要性。最后,使用随机蒙特卡洛技术并入了数据不确定性的影响。

著录项

  • 作者

    Chien, Joshua Michael.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.;Sustainability.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 310 p.
  • 总页数 310
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号