首页> 外文学位 >Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions.
【24h】

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions.

机译:在恒定法向应力和刚度边界条件下的块状脆性岩石的剪切断裂。

获取原文
获取原文并翻译 | 示例

摘要

The shear rupture of massive (intact non-jointed) brittle rock in underground high stress mines occurs under a variety of different boundary conditions ranging from constant stress (no resistance to deformation) to constant stiffness (resistance to deformation). While a variety of boundary conditions exist, the shear rupture of massive rock in the brittle field is typically studied under constant stress boundary conditions. According to the theory, the fracturing processes leading to shear rupture zone creation occur at or near peak strength with a shear rupture surface created in the post-peak region of the stress-strain curve. However, there is evidence suggesting that shear rupture zone creation can occur pre-peak. Limited studies of shear rupture in brittle rock indicate pre-peak shear rupture zone creation under constant stiffness boundary conditions. This suggests that the boundary condition influences the shear rupture zone creation characteristics.;In this thesis, shear rupture zone creation in brittle rock is investigated in direct shear under constant normal stress and normal stiffness boundary conditions. It is hypothesized that the boundary condition under which a shear rupture zone is created influences its characteristics (i.e., shear rupture zone geometry, load-displacement response, shear rupture zone creation relative to the load-displacement curve, and peak and ultimate strengths). In other words, it is proposed that the characteristics of a shear rupture zone are not only a function of the rock or rock mass properties but the boundary conditions under which the rupture zone is created.;The hypothesis is tested and proven through a series of simulations using a two dimensional particle based Distinct Element Method (DEM) and its embedded grain based method. The understanding gained from these simulations is then used in the analysis and re-interpretation of rupture zone creation in two mine pillars. This is completed to show the value and practical application of the improved understanding gained from the simulations. The re-interpretation of these case histories suggests that one pillar ruptured predominately under a constant stress boundary condition while the other ruptured under a boundary condition changing from stiffness to stress control.;This body of work provides an improved understanding of the shear rupture of brittle rock under both constant normal stress and normal stiffness boundary conditions through the use of calibrated numerical simulations. By applying this understanding to two field case histories, which also support the findings from the DEM simulations, it was possible to arrive at an improved interpretation of shear rupture zone creation in pillars and to provide evidence for boundary condition effects in the field.
机译:地下高应力矿山中块状(完整无节理的)脆性岩石的剪切破裂发生在各种不同的边界条件下,从恒定应力(无抗变形性)到恒定刚度(抗变形性)。尽管存在各种边界条件,但通常在恒定应力边界条件下研究脆性场中块状岩石的剪切破裂。根据该理论,导致剪切断裂带产生的断裂过程在峰值强度处或接近峰值强度时发生,并且在应力-应变曲线的峰后区域中产生了剪切断裂表面。但是,有证据表明,剪​​切破裂区的产生可以在峰前发生。对脆性岩石中的剪切断裂的有限研究表明,在恒定刚度边界条件下会产生峰前剪切断裂带。这就说明边界条件会影响剪切断裂带的形成特征。本论文研究了在恒定法向应力和法向刚度边界条件下直接剪切条件下脆性岩石中剪切断裂带的产生。假设在剪切断裂带形成的边界条件下会影响其特性(即剪切断裂带的几何形状,载荷-位移响应,相对于载荷-位移曲线的剪切断裂带的产生以及峰值和极限强度)。换句话说,有人提出剪切断裂带的特征不仅是岩石或岩体性质的函数,而且是产生断裂带的边界条件。;通过一系列假设对假设进行了检验和证明使用基于二维粒子的离散元素方法(DEM)及其基于嵌入晶粒的方法进行的模拟。从这些模拟中获得的理解随后被用于分析和重新解释两个矿柱中破裂带的产生。这是为了表明从模拟中获得的改进理解的价值和实际应用。对这些案例历史的重新解释表明,一个支柱在恒定应力边界条件下主要破裂,而另一根在从刚度变为应力控制的边界条件下破裂。;这项工作可以更好地理解脆性的剪切破裂。通过使用校准的数值模拟,在恒定法向应力和法向刚度边界条件下都可以使岩石变形。通过将这种理解应用于两个现场案例历史,它们也支持DEM模拟的结果,有可能获得对支柱中剪切断裂带创建的改进解释,并为现场边界条件的影响提供证据。

著录项

  • 作者

    Bewick, Robert Paul.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Mining engineering.;Geological engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 364 p.
  • 总页数 364
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号