首页> 外文学位 >Atomic structure and pressure-induced phase transformations in a phase-change alloy.
【24h】

Atomic structure and pressure-induced phase transformations in a phase-change alloy.

机译:相变合金中的原子结构和压力诱导的相变。

获取原文
获取原文并翻译 | 示例

摘要

Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.
机译:在环境条件下,相变材料至少存在两相。一个是非晶态,另一个是结晶相。这两相具有非常不同的物理特性,例如电导率,光反射率,质量密度,热导率等。独特的物理特性以及非晶相和结晶相之间的快速转变使这些材料具有存储信息的能力。例如,DVD和蓝光盘利用了光反射率对比,而新开发的固态存储器利用了较大的电导率差。此外,相变存储器(PCM)中的非晶相和结晶相在室温下都非常稳定,并且在具有大存储密度的设备生产中易于按比例放大。所有这些功能使相变材料成为下一代存储器的理想选择。尽管这些新型存储材料在工业中发展迅速,但仍无法完全解决这些有趣的材料所基于的许多基本物理问题。本文旨在解决相变材料中的一些关键问题。大多数相变材料由Ge-Sb-Te成分组成。在所有这些基于Ge-Sb-Te的材料中,Ge2Sb2Te5(GST)的性能最佳,并且已作为典型的相变材料进行了广泛的研究。第一个也是最重要的问题是两个运作阶段的结构。在本文中,我们使用从头算工具和X射线衍射(XRD)方法研究了非晶态GST(a-GST)和晶体GST(c-GST)的独特原子结构和键合性质。然后使用电子结构计算来分析其局部结构和粘接方案。为了深入了解快速相变机理,我们还对GST进行了一系列高压实验。高压下通过原位XRD和原位电阻率测量揭示了几种新的多晶型物及其转变。通过从头算分子动力学模拟已经发现了结构和性质变化的机理。

著录项

  • 作者

    Xu, Ming.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Materials Science.;Chemistry Inorganic.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号