首页> 外文学位 >Computational and Experimental Modeling of the Bioheat Transfer Process of Perfusion in Tissue Applied to Burn Wounds.
【24h】

Computational and Experimental Modeling of the Bioheat Transfer Process of Perfusion in Tissue Applied to Burn Wounds.

机译:用于烧伤创面的组织灌注生物传热过程的计算和实验建模。

获取原文
获取原文并翻译 | 示例

摘要

A new mathematical model has been developed along with a new parameter estimation routine using surface temperature and heat flux measurements to estimate blood perfusion and thermal resistance in living tissue. Dynamic thermal measurements collected at the surface of the sensor before and after imposing a dynamic thermal cooling event are used with the model to estimate the blood perfusion, thermal resistance and core temperature. The Green's function based analytical solution does not require calculation of the whole tissue temperature distribution, which was not the case for the previous models. The result from the new model was proved to have better and more consistent results than previous models. The new model was validated to solve one of the unsolved biomedical problems which is the ability of detecting burn severity. The method was tested with a phantom perfusion system. The results matched known blood perfusion and thermal resistance values. The method was also tested with burns on animal models. Inflammation effects associated with the burns were studied using a newly developed term called the Burn Factor. This correlated with the severity of imposed burns.;This work consists of three journal papers. The first paper introduces the mathematical model and its validation with finite-difference solutions. The second paper validates the physical aspects of the usage of the model with thermal measurement in detecting simulated burned layers and the associated perfusion. The third paper demonstrates the ability of the model to use thermal measurements to detect different burn severity of an animal model and to study the healing process.
机译:已经开发了新的数学模型以及新的参数估计例程,该例程使用表面温度和热通量测量值来估计活组织中的血液灌注和热阻。在进行动态热冷却事件之前和之后,在传感器表面收集的动态热测量值将与模型一起使用,以估计血液灌注,热阻和核心温度。基于格林函数的分析解决方案不需要计算整个组织的温度分布,而以前的模型则不是这种情况。事实证明,新模型的结果比以前的模型具有更好,更一致的结果。经过验证,该新模型可解决尚未解决的生物医学问题之一,即能够检测烧伤严重程度的能力。该方法已通过幻像灌注系统进行了测试。结果与已知的血液灌注和热阻值匹配。还用动物模型上的灼伤测试了该方法。使用新开发的术语“燃烧因子”研究了与烧伤相关的炎症效应。这与强行烧伤的严重程度有关。这项工作包括三篇期刊论文。第一篇论文介绍了数学模型及其使用有限差分法的验证。第二篇论文通过热测量验证了模型使用的物理方面,以检测模拟的燃烧层和相关的灌注。第三篇论文展示了该模型使用热测量来检测动物模型不同程度的烧伤严重程度并研究其愈合过程的能力。

著录项

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号