首页> 外文学位 >System dynamics modeling as a quantitative-qualitative framework for sustainable water resources management: insights for water quality policy in the great lakes region.
【24h】

System dynamics modeling as a quantitative-qualitative framework for sustainable water resources management: insights for water quality policy in the great lakes region.

机译:将系统动力学建模作为可持续水资源管理的定量定性框架:大湖区水质政策的见解。

获取原文
获取原文并翻译 | 示例

摘要

Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U;) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.
机译:早期的水资源建模工作主要是为了代表水文过程,但是对跨学科研究的需求导致环境,社会和经济功能的复杂性和整合性增加。从仅采用基于工程的模拟模型到采用更多的整体框架的逐步转变表明,水资源模型的传统范式有望发生变化,从而支持更可持续的管理决策。本文运用系统动力学模拟和环境系统分析技术,为定量湖泊定性框架在可持续水资源管理中的应用做出了贡献,为大湖流域水质管理提供了见识。传统的线性思维范式缺乏可持续发展轨迹的思想和组织框架,可能会导致无法解决水资源问题关键驱动因素的快速解决方案。为了促进对水资源系统的整体分析,系统思想试图理解子系统之间的相互作用。系统动力学通过提供有用的定性工具(例如因果关系图(CLD),存量流量图(SFD)和系统原型),为将系统思想及其在水资源问题中的应用提供了一个合适的框架。该方法提供了一个高级定量定性建模框架,以“全面了解”水资源系统,利益相关者的参与,政策分析和战略决策。尽管使用广泛的计算机模拟和优化进行定量建模仍然非常重要,并且对于进行政策筛查是必需的,但是定性系统动力学模型可以增进对总体趋势和问题根源的理解,从而促进可持续的水资源决策。在系统动力学框架内,假设了一个支配阿勒根湖富营养化问题的增长和投资不足(G&U;)系统原型来解释该系统的问题行为并确定缓解政策的要点。开发了系统动力学模拟模型来表征湖泊从富营养状态的恢复,并评估许多建议的总最大日负荷(TMDL)减少策略,包括点源(PS)和非点源(NPS)的磷负荷减少。结果表明,要使TMDL计划有效,就应将其视为持续可持续性过程的组成部分,该过程应考虑社会经济增长,土地利用变化和环境条件之间动态反馈关系的功能。此外,开发了高级仿真优化框架,以指导卡拉马祖流域中流域规模BMP的实施。在流域中应优先考虑农业BMP,以促进经济高效地实现Allegan湖TP浓度目标。但是,如果没有适当的支持政策,农业BMP的实施可能会对农业生产者产生不利影响。莫米河流域案例研究的结果表明,在上游和下游流域协调实施BMP可以显着提高TP减排的成本效率。

著录项

  • 作者

    Mirchi, Ali.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Water Resource Management.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号